
1

OUTLINE

1. Introduction and Importance of IC Design Verification

2. Lecture

 Functional Verification of DCLS Feature of RISC-V

3. Practical Demonstration

 Simulating the open-source SweRV EH1 core using RISC-V Tool chain +

Synopsys VCS

2

Presented by:

National Electronics Complex of Pakistan (NECOP)

INTRODUCTION AND IMPORTANCE
OF IC DESIGN VERIFICATION

3

WHAT IS DESIGN VERIFICATION?

Design verification is the process used to gain confidence in the

correctness of a design w.r.t. the requirements & specifications.

4

VERIFICATION IN THE IC DESIGN PROCESS

• Functional verification aims to demonstrate that the functional intent of a design is preserved in its

implementation.

5

6

WHY IS VERIFICATION IMPORTANT?

7

WHY IS VERIFICATION IMPORTANT?

8

WHY IS VERIFICATION IMPORTANT?

9

COST OF BUGS OVER TIME

10

Demo of the Pentium FDIV Bug.mp4

VERIFICATION AT DIFFERENT DESIGN
LEVELS

11

VERIFICATION AT DIFFERENT DESIGN
LEVELS

12

WHY IS VERIFICATION IMPORTANT?

Verification is the single biggest lever to affect the triple constraints:

• Quality

i. A high-quality track record preserves revenue and reputation.

ii. Ideally a team can establish a “right-first-time” track record.

• Cost

i. Fewer revisions through the fabrication/development process means lower costs.

ii. Re-spinning a chip costs hundreds and thousands of dollars.

• Timing/Schedule

i. Fewer revisions through the fabrication/development process means faster time-to-market.

ii. Re-spinning a chips costs 6-8 weeks at least. 13

ROLE OF VERIFICATION IN IC DESIGN

• Engineers need to balance the conflict of interest:

- Tight time-to-market constraints vs. increasing design complexity

• Aim: “Right-first-time” design, “correct-by-construction”

- More and more time-consumed to obtain acceptable level of confidence in correctness of

design!

• Design time << Verification time

- Upto 70% of design effort can go into verification

- Remember: Verification does not create value! But it preserves revenue and reputation!

- In some cases, verification engineers out number designers 2:1
14

DESIGN VERIFICATION TEAM @ NECOP

• Established in 2022

• Functional verification of RTL designs provided by the design teams

10xEngineers
Expertise

Acquired  IP
level testing

Provision of IP
verification

services

YONGATEK
Expertise

Acquired  SoC
level verification

Establishment of
SoC verification

facility
15

DESIGN VERIFICATION TEAM @ NECOP

Team’s
Skillset

IP Verification

SoC
Verification

CPU
Verification

16

NECOP DV TEAM WORKING FLOW

17

Verification Tools:

1. Synopsys
• SpyGlass

• Verdi Debug

• VCS

• VC Execution Manager

2. Cadence
• Jasper Gold

• Xcelium

• V-Manager

3. Mentor Graphics
• HDL Designer

• QuestaSim

VERIFICATION LANGUAGES

• Programming Languages

• Verilog/System Verilog

• UVM Methodology

• C/C++

• SystemC

• Scripting Languages

• Makefile

• Python

• Bash

• Tcl
18

Functional Verification of RISCV based
Dual-Core Lockstep Feature using Fault

Injection Mechanism

19

Welcome to the
open era of
computing.

RISC-V is the free and open

Instruction Set Architecture…

… Driven through open

collaboration

… Enabling freedom of design

across all domains and

industries

… Cementing the strategic

foundation of semiconductors

Disruptive Technology

Barriers Legacy ISA RISC-V ISA

Complexity
1500+ base instructions

Incremental ISA
47 base instructions

Modular ISA

Design freedom $$$ – Limited Free – Unlimited

License and Royalty fees $$$ Free

Design ecosystem Moderate Growing rapidly. Numerous
extensions, open and

proprietary cores

Software ecosystem Extensive Growing rapidly

21

Industry innovation on RISC-V

Hardware
– RV64, multi-heart

CPUs, vectors,
bit manipulation,

hypervisors, debug mode –

AI SoCs
Application
processors

Software
Linux

Drivers
AI Compilers

Hardware
– RV32, privilege

modes, interrupts –

IoT SoCs
Microcontrollers

Software
RTOS

Firmware

Hardware
– RV32 –

Proof of Concept SoCs
Minion processors for
power management,
communications, …

Software
Bare metal software

Hardware
ISA Definition

Test Chips

Software
TestsC

o
m

p
le

x
it

y

2010 – 2016 2017 – 2018 2019 – 2020 2021

22

ISA Discussion

23

ISA Discussion

24

Classical 5-Stage Pipelining in RISC-V

25

RISC-V Load/Store Architecture

26

RISC-V based General Processor

27

MOTIVATION OF DCLS CORE

28

• Dual-core lockstep cores are used to

i. Enhance fault tolerance,

ii. Improve reliability, and

iii. Meet the stringent safety requirements of critical applications.

• They provide a robust and proven approach to building high-reliability computing systems

that can withstand hardware faults and environmental challenges.

SOURCES OF FAILURES

• Radiational Issues in ICs (SEUs)

• Memory: There is an accidental trigger that changes the

memory state in the system. Common scenarios include a

hit by a radiation particle, interference from RF transmitter

• Single Event Latchup (SEL)

• Short-circuits between the power signal and the ground

29

WHAT IS DUAL-CORE LOCKSTEP (DCLS)?

• Dual-core lockstep (DCLS) is a redundancy technique for

high-reliability computing used in safety-critical systems like

aerospace, automotive, and industrial control systems.

• Both core’s internal states & outputs are compared at each

clock cycle.

• Any divergence or mismatch between core’s states is

indicated as an error in the system.

30

GENERIC DCLS BLOCK DIAGRAM

31

CHECKPOINT AND ROLLBACK
METHODOLOGY

• The checkpoint is an operation that saves a consistent state of the processor in the memory

• The rollback recovers the system from an error by restoring that previous state

• When the Checker detects a mismatch in the CPU’s data output the interrupt is launched to

perform a rollback.

32

COMMON MODE
FAILURES

• DCLS cannot detect potential failures that

can occur at the same point in both cores

since the failures do not cause any difference

between their outputs.

• These failures are referred to as common

mode failures, which cause false match in

the DCLS system.

33

TEMPORAL DIVERSITY

• A common approach to this is delaying the

redundant core for few cycles by inserting shift

registers into the inputs.

• With a temporal diversity of even a few cycles, it is

less likely that an erroneous trigger occurs at the

same point of two cores.

• Note that this approach requires resynchronization

of outputs from two cores before comparisons.
34

REFERENCE DESIGN

• An Open-Source SweRV-Core with Integrated DCLS

Feature

• RV32-IMF architecture where “I” stands for Integer,

“M” Multiplication & “F” for floating point

• GitHub - chipsalliance/Cores-VeeR-EH1: VeeR EH1

core

35

https://github.com/chipsalliance/Cores-VeeR-EH1

DIFFERENT FAULT INJECTION
(FI) TECHNIQUES

• Hardware and software-based techniques

• This work focus on software-based FI techniques

• Software-based techniques are categorized based on the

time of fault-injection, i.e, compile-time, and run-time

• Code Modification/Insertion

• RTL of design under verification (DUV) is altered during

run-time.

36

PROPOSED FI FRAMEWORK

37

FLOW
DIAGRAM

38

Faults Modeling

The process of describing and characterizing the types, locations, and
behaviors of faults that might arise in SoCs is known as fault modelling.

In the proposed FI framework, faults are modelled using UVM-macros.

The UVM-macros allows backdoor access to DUV internal registers.

Hundred different DCLS internal state signals are accessed in the
fault model, for customizing or flipping their existing stored data.

The UVM macros used for faults modelling are:

(i) uvm-hdl-deposit,

(ii) uvm-hdl-force,

(iii) uvm-hdl-force-time,

(iv) uvm-hdl-release and

(v) uvm-hdl-read.

39

USED APPLICATION
CASES

• The applications used to test DCLS functionality is an open-

source Test-Suite known as “Google RISC-V DV”.

• GitHub - chipsalliance/riscv-dv: Random instruction

generator for RISC-V processor verification.

40

https://github.com/chipsalliance/riscv-dv

Faults Simulation

Application cases in the form of Google RISC-V DV test-

suite are applied to the DUV.

Faults are induced during each application test case

simulation.

Simultaneously, the FI routines are also applied to the

DUV.

The resulting fault’s latency, propagation and severity

levels are then analyzed using simulation waveforms

data.
41

UVM-BASED TESTBENCH

42

RESULTS

• Approximately 20,000 errors are injected by FI campaigns.

• The DCLS feature successfully detects 98.7% of errors from the overall fault injection routines.

• The application cases and their number of detected versus injected faults are shown below

43

FUTURE DIRECTIONS

• Add new Fault-Injection scenarios

• Use advanced AI features to model the faults

• Test the enhanced fault-injection framework with

different cores architectures

44

FVDCLS RESEARCH PAPER
Research paper accepted in VLSI-SoC Conference Morocco, 2024

45

RISC-V CORE VERIFICATION
FLOW/DEMO

46

INTRODUCTION TO RISC-V ISA

• RISC-V (pronounced "risk-five”): An open-source implementation of a reduced

instruction set computing (RISC) based instruction set architecture (ISA)

• Permitting any person or group to construct compatible computers

• Originated in 2010 by researchers at UC Berkeley

• RISC-V ISA includes: A small base integer ISA, usable by itself as a base for

customized accelerators or for educational purposes, and

Optional standard extensions, to support general-purpose software development

Optional customer extensions 47

INTRODUCTION TO RISC-V ISA

• ISA support is given by RV + word-width + extensions supported permitting any person or

group to construct compatible computers

 RV32I means 32-bit RISC-V with support for the I(Integer) instruction set

• A mandatory Base integer ISA

I: Integer instructions

• Standard Extensions

M: Integer Multiplication and Division

A: Atomic Instructions

F: Single-Precision Floating-Point

D: Double-Precision Floating-Point

C: Compressed Instructions (16 bit)
48

RV32/64 PROCESSOR
REGISTER SET

• 32 32/64-bit integer registers (x0-x31)

 x0 always contains a 0

• 32 floating-point (FP) registers (f0-f31)

 Each can contain a single- or double-precision

FP value (32-bit or 64-bit IEEE FP)

• Program counter (pc) which holds the address of the

current instruction

49

50

DIFFERENT RISC-V INSTRUCTIONS

51

DIFFERENT RISC-V INSTRUCTIONS

RISC-V
GREEN CARD

52

RISC-V
GREEN CARD

53

RISC-V INSTRUCTION FORMATS

54

• Specification from RISC-V website

 https://riscv.org/specifications/

DESIGN UNDER VERIFICATION

• https://github.com/chipsalliance/Cores-SweRV

• The Western Digital SWERV Core EH1 is a 32-bit, dual-issue, 9-stage pipeline core.

• Dual-issue: each clock cycle the processor can move two instructions from one stage of the

pipeline to the next stage.

55

https://github.com/chipsalliance/Cores-SweRV

RISC-V PROCESSOR BENCHMARKING

• Benchmarks determine processor performance by running programs that

exercise the hardware.

• This enables comparison of different processors.

56

 4.9 CoreMark/MHz (The CoreMark Score is the number of iterations completed per second)

 2.3 DMIPs/MHz (It's a measure of how many operations the CPU can perform in a

single clock cycle)

MOTIVATION

• Accelerate the verification of RISC-V cores by incorporating open-source verification solutions

instead of re-inventing the wheel.

57

BUILDING BLOCKS OF CPU VERIFICATION

A CPU level design verification

environment

Includes;

 DUT RTL

 Testbench

• Instantiates RTL

• Driver, Monitor and

Scoreboard

 Tests Generator

 Golden Reference Model

Building all these blocks from scratch

takes

a lot of time and resources

Pass/Fail
58

OPEN-SOURCE RISC-V ECOSYSTEM

 Google RISC-V DV

• An open-source constraint random instruction

Generator for RISC-V processor verification

• Contains Open-source RISC-V Test-Suite

 RISC-V Toolchain

 Spike ISS

Open-source RISC-V ISA simulator which implements

a functional model of RISC-V Core

 SWERV-EH1

The Western Digital SWERV Core EH-1 is a 32-bit,

dual-issue, 9-stage pipeline core

59

SPECIFICATIONS AND SOFTWARE
FROM RISCV.ORG AND GITHUB.COM/RISCV

• Open-Source RISC-V processor verification framework

 https://github.com/Lampro-Mellon/LM-RISCV-DV

RISC-V software includes

 GNU Compiler Collection (GCC) toolchain (with GDB, the debugger)

 https://github.com/riscv/riscv-tools

 A simulator ("Spike")

 https://github.com/riscv/riscv-isa-sim

• A list from

 https://github.com/riscvarchive/riscv-cores-list

60

https://github.com/Lampro-Mellon/LM-RISCV-DV

FLOW DIAGRAM

61

FLOW DIAGRAM

SweRV Core

Core

log

62

FLOW DIAGRAM WITH COVERAGE

63

RISC-V DV REPOSITORY

64

FILES FOR INTEGRATION

65

66

67

POST-COMPARISON STEPS

68

POST-COMPARISON STEPS

69

INITIAL SETTINGS

70

TOOLS SETTINGS

• Add the VCS compiler into the rtl_simulation.yaml file and add the flist there.

• SweRV_flist.f file contains all the files included in the design hierarchy.

• SweRV flist & rtl_simulation.yaml file is shown in fig:

71

RISC-V CORE SETTINGS

• Configure the riscv_core_setting.sv file

according to SweRV core parameters

e.g, mode, supported ISA etc.

72

STANDARD RISC-V
SweRV CSRs

CONFIGURATIONS

• Configure all the SweRV core CSRs with bit

fields in the SweRV_CSR.yaml file.

• Screenshot of the SweRV mstatus & mie CSRs

is shown in fig:

73

TESTS INCLUSION

• Tests to be run (Directed/Random) on core should be present in “testlist.yaml” file. Parameters

like instruction count & iterations are set in this file.

• Screenshot of “riscv_arithmetic_basic_test” is shown below:

74

TESTS COMPILATION &
GENERATION

75

COMPILING THE

TESTBENCH

FRAMEWORK

• Framework Compilation Command:

• “make compile”

• Screenshot of compile_log is shown in

fig:

76

RISC-V ARITHMETIC BASIC TEST
GENERATION

• RISC-V test generation Command:

• “make gen TEST=riscv_arithmetic_basic_test SEED=1”

• Screenshot of test_generation_log is shown in fig:

77

RISCV ARITHMETIC BASIC
TESTGENERATION

• RISC-V test generation Command:

• “make gen TEST=riscv_arithmetic_basic_test SEED=1”

• Screenshot of test_generation_log is shown in fig:

78

RISC-V GENERATED
ASSEMBLY TEST

• Generates RISC-V test in the form of

assembly code with the file named

“riscv_arithmetic_basic_test_0.S”.

• Screenshot of generated test file is shown in

fig:

79

RISC-V TEST COMPILATION

• To generate executables and hex program file to load in Core RAM, following

command is given:

“make gcc_compile TEST=riscv_arithmetic_basic_test SEED=1”

• Screenshot of generated files are shown in fig:

80

RISC-V TEST
COMPILATION

• To generate executables and hex program file to

load in Core RAM, following command is given:

“make gcc_compile

TEST=riscv_arithmetic_basic_test SEED=1”

• Screenshot of generated test dump file is

shown in fig:

81

RISC-V TEST
COMPILATION

• To generate executables and hex program file to

load in Core RAM, following command is given:

“make gcc_compile

TEST=riscv_arithmetic_basic_test SEED=1”

• Screenshot of generated program_hex file is

shown in fig:

82

RTL TEST SIMULATION

• To run the generated program in hex file on

core, run the following command:

“make rtl_sim

TEST=riscv_arithmetic_basic_test SEED=1”

• Screenshot of generated core_trace log is

shown in fig:

83

POST COMPARISON STAGE 84

POST-COMPARISON

• To run the same generated program in hex

file on spike, run the following command:

“make post_compare

TEST=riscv_arithmetic_basic_test

SEED=1”

• The command makes .csv files from both

core & spike logs, compares them and

generate final regression log.

• Screenshot of result of run test on terminal

is shown in fig:

85

POST-COMPARISON

• To run the same generated program in hex file

on spike, run the following command:

“make post_compare

TEST=riscv_arithmetic_basic_test SEED=1”

• The command makes .csv files from both core &

spike logs, compares them and generate final

regression log.

• Screenshot of generated spike_log is shown in

fig:

86

POST-COMPARISON

• To run the same generated program in hex
file on spike, run the following command:

“make post_compare
TEST=riscv_arithmetic_basic_test

SEED=1”

• The command makes .csv files from both
core & spike logs, compares them and
generate final regression log.

• Screenshot of generated core.csv is shown
in fig:

87

POST-COMPARISON

• To run the same generated program in hex file on spike, run the following command:

“make post_compare TEST=riscv_arithmetic_basic_test SEED=1”

• The command makes .csv files from both core & spike logs, compares them and generate

final regression log.

• Screenshot of generated regr_log is shown in fig:

88

POST-COMPARISON

• To run the same generated program in
hex file on spike, run the following
command:

“make post_compare
TEST=riscv_arithmetic_basic_test

SEED=1”

• The command makes .csv files from
both core & spike logs, compares
them and generate final regression
log.

• Screenshot of generated regr_log [In
case of any mismatches found] is
shown in fig:

89

CORE COVERAGE 90

CORE CODE COVERAGE [HTML]

• To see how much code coverage is achieved by running the following command:

“make cov_urg_all”

• Screenshot of html-based code coverage & no. of tests run on core is shown in fig:

91

CORE CODE COVERAGE [HTML]

• To see how much code coverage is achieved by running the riscv_arithmetic_basic_test, run

the following cmnd:

“make cov_urg_all”

• Screenshot of html-based detailed code_coverage of core is shown in fig:

92

CORE CODE
COVERAGE [DVE]

• To see how much code coverage is

achieved by running the following

command:

“make cov_all”

• Screenshot of DVE-based detailed

code_coverage of core is shown in

fig:

93

CORE FUNCTIONAL COVERAGE

• To see how much code coverage is

achieved by running the

riscv_arithmetic_basic_test, run the

following cmnd:

“make fcov_core

TEST=riscv_arithmetic_basic_test

SEED=1”

• Screenshot of html-based detailed

functional_coverage of core is shown in

fig:

94

DEMO

95

