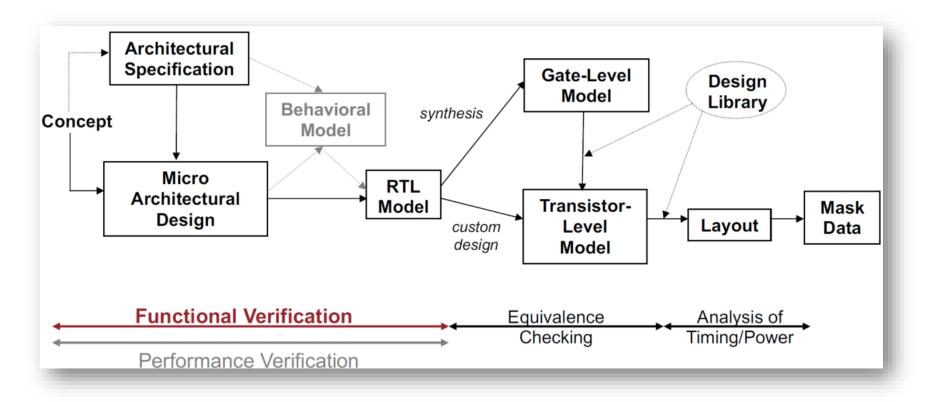


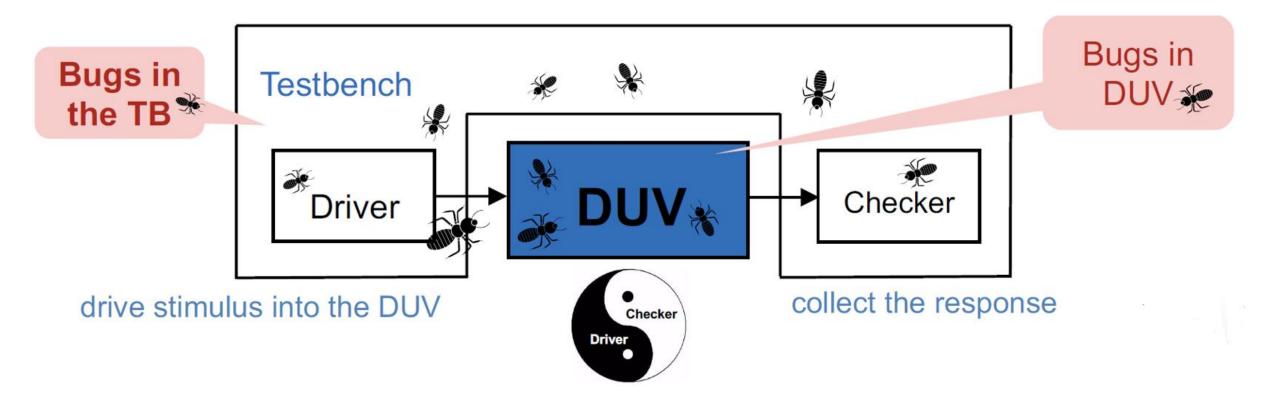
OUTLINE

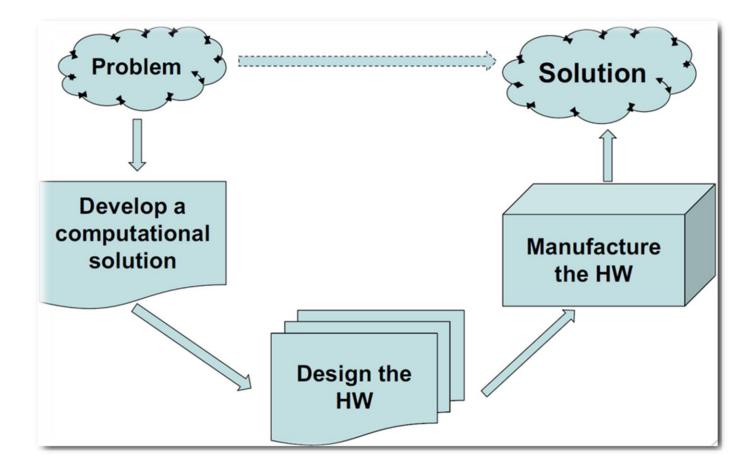
- 1. Introduction and Importance of IC Design Verification
- 2. Lecture
 - Functional Verification of DCLS Feature of RISC-V
- 3. Practical Demonstration
 - Simulating the open-source SweRV EH1 core using RISC-V Tool chain + Synopsys VCS

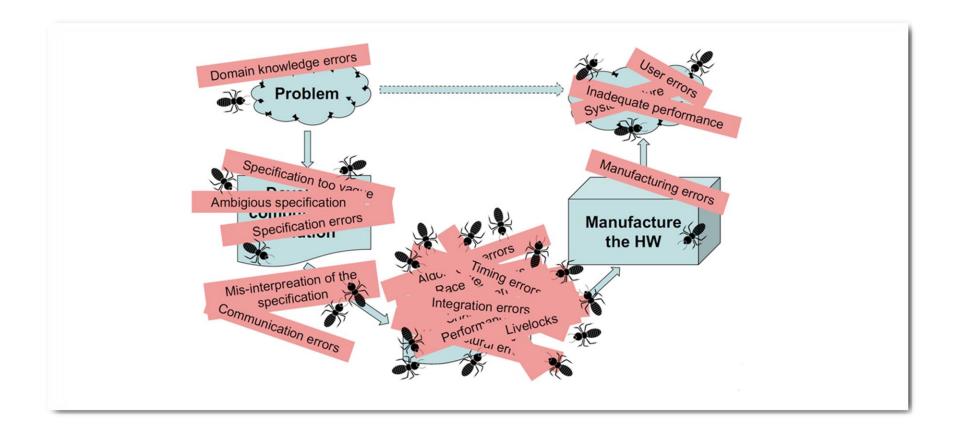
Presented by: National Electronics Complex of Pakistan (NECOP)

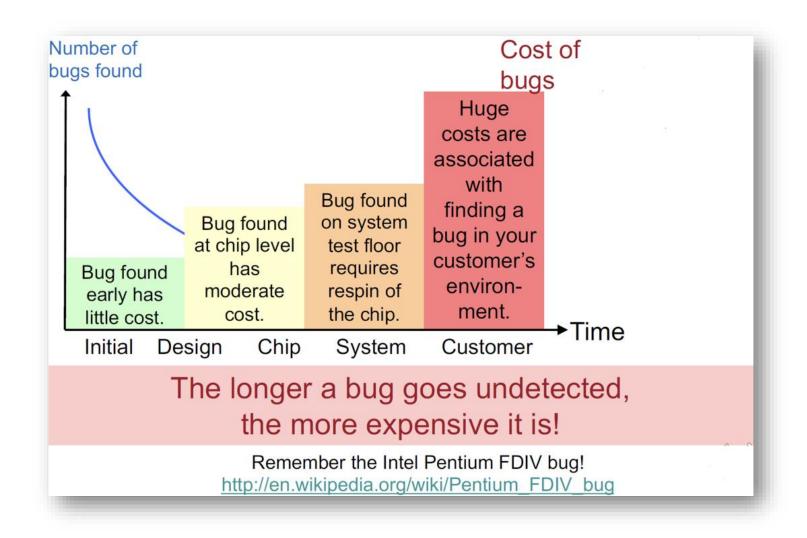

INTRODUCTION AND IMPORTANCE OF IC DESIGN VERIFICATION

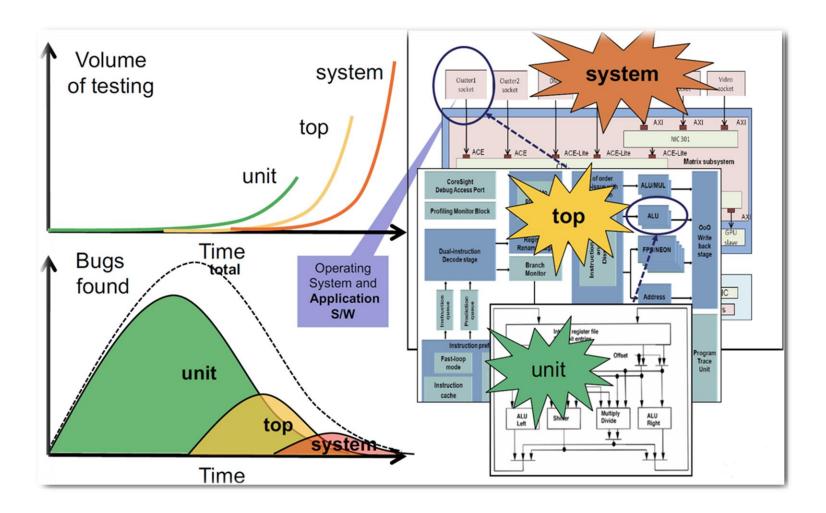
WHAT IS DESIGN VERIFICATION?

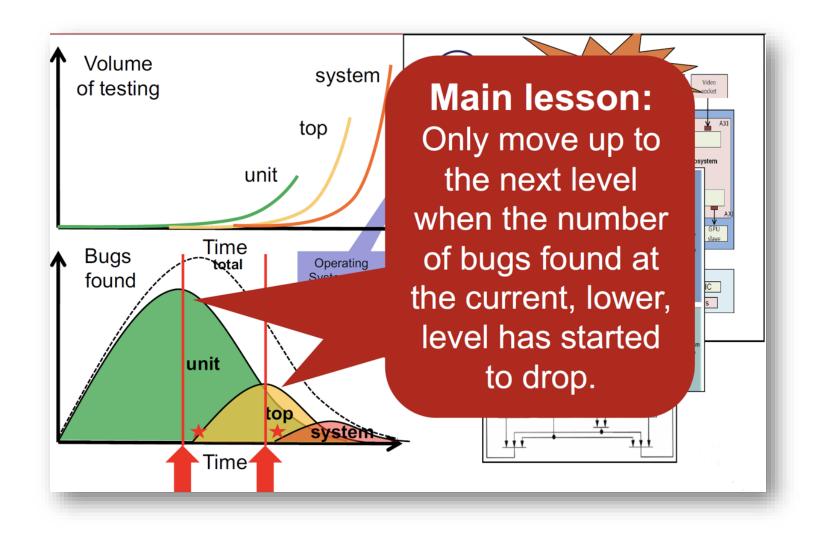

Design verification is the process used to gain confidence in the correctness of a design w.r.t. the requirements & specifications.


VERIFICATION IN THE IC DESIGN PROCESS


 Functional verification aims to demonstrate that the functional intent of a design is preserved in its implementation.






COST OF BUGS OVER TIME

VERIFICATION AT DIFFERENT DESIGN LEVELS

VERIFICATION AT DIFFERENT DESIGN LEVELS

Verification is the single biggest lever to affect the triple constraints:

Quality

- i. A high-quality track record preserves revenue and reputation.
- ii. Ideally a team can establish a "right-first-time" track record.

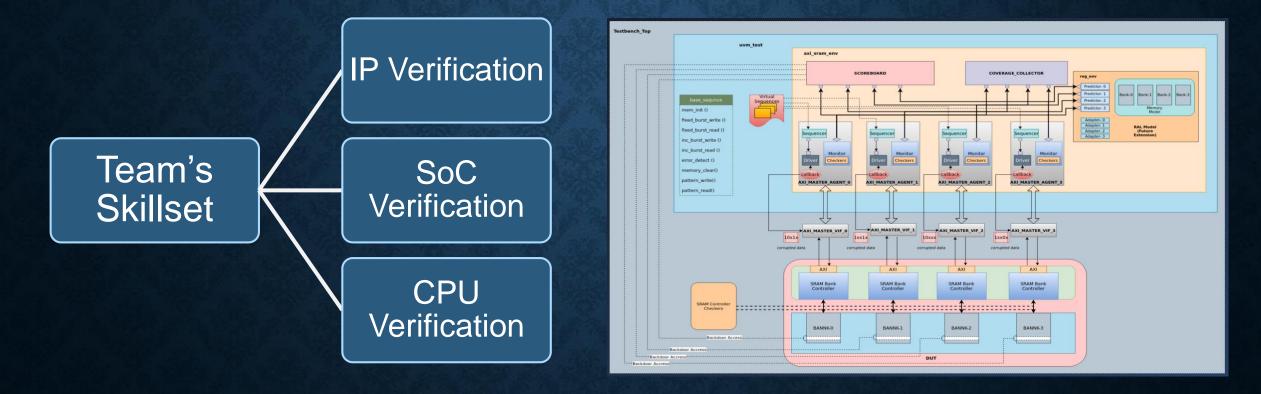
• Cost

- i. Fewer revisions through the fabrication/development process means lower costs.
- ii. Re-spinning a chip costs hundreds and thousands of dollars.

Timing/Schedule

- i. Fewer revisions through the fabrication/development process means faster time-to-market.
- ii. Re-spinning a chips costs 6-8 weeks at least.

ROLE OF VERIFICATION IN IC DESIGN


- Engineers need to balance the conflict of interest:
 - Tight time-to-market constraints vs. increasing design complexity
- Aim: "Right-first-time" design, "correct-by-construction"
 - More and more time-consumed to obtain acceptable level of confidence in correctness of design!
- Design time << Verification time
 - Upto 70% of design effort can go into verification
 - Remember: Verification does not create value! But it preserves revenue and reputation!
 - In some cases, verification engineers out number designers 2:1

DESIGN VERIFICATION TEAM @ NECOP

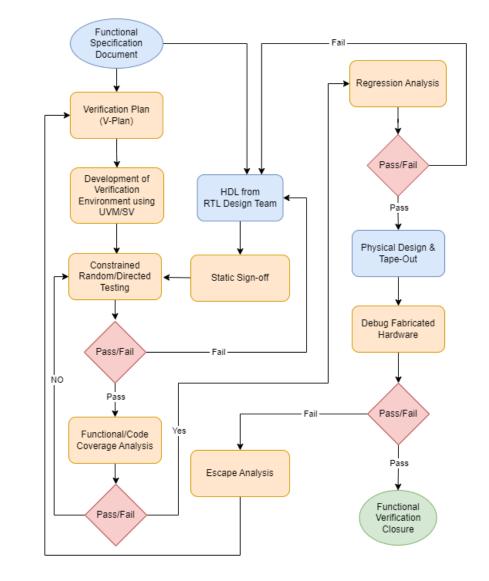
- Established in 2022
- Functional verification of RTL designs provided by the design teams

DESIGN VERIFICATION TEAM @ NECOP

NECOP DV TEAM WORKING FLOW

Verification Tools:

1. Synopsys


- SpyGlass
- Verdi Debug
- VCS
- VC Execution Manager

2. Cadence

- Jasper Gold
- Xcelium
- V-Manager

3. Mentor Graphics

- HDL Designer
- QuestaSim

VERIFICATION LANGUAGES

Programming Languages

- Verilog/System Verilog
- UVM Methodology
- C/C++
- SystemC
- Scripting Languages
 - Makefile
 - Python
 - Bash
 - Tcl

FVDCLS

Functional Verification of RISCV based Dual-Core Lockstep Feature using Fault Injection Mechanism

Welcome to the open era of computing.

RISC-V°

RISC-V is the free and open Instruction Set Architecture...

- ... Driven through open collaboration
- ... Enabling freedom of design across all domains and industries
- ... Cementing the strategic foundation of semiconductors

Disruptive **Technology**

Barriers

Complexity

Design freedom

License and Royalty fees

Design ecosystem

Software ecosystem

Legacy ISA

1500+ base instructions Incremental ISA

\$\$\$ – Limited

\$\$\$

Moderate

Extensive

RISC-V ISA

47 base instructions Modular ISA

Free – Unlimited

Free

Growing rapidly. Numerous extensions, open and proprietary cores

Growing rapidly

Industry innovation on RISC-V

Complexity

Hardware – RV32 –

Proof of Concept SoCs

Minion processors for

power management,

communications, ...

Software

Bare metal software

2017 - 2018

Hardware

– RV32, privilege modes, interrupts –

IoT SoCs Microcontrollers

> **Software** RTOS Firmware

2019 - 2020

Hardware

– RV64, multi-heart
 CPUs, vectors,
 bit manipulation,
 hypervisors, debug mode –

Al SoCs Application processors

Software Linux Drivers Al Compilers

2021

RISC-V°

Hardware

ISA Definition

Test Chips

Software

Tests

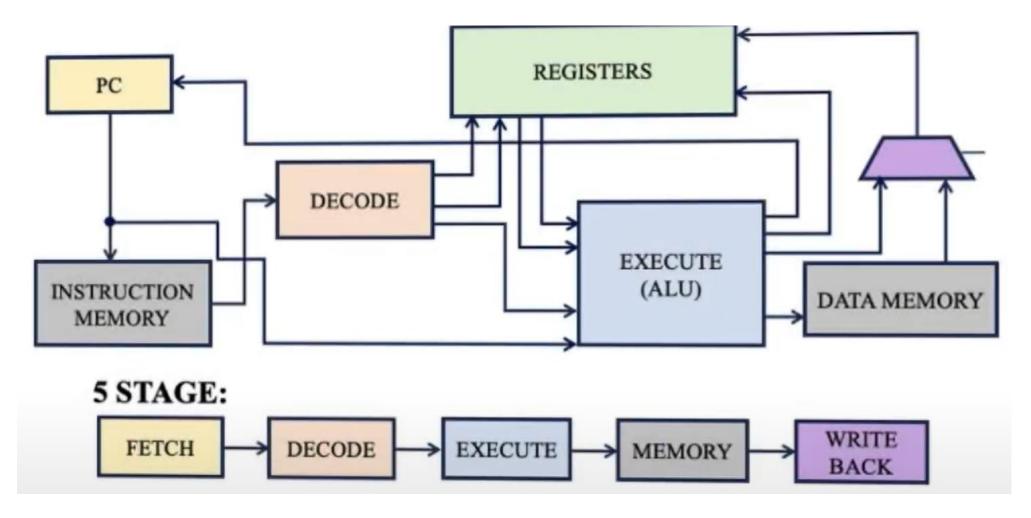
2010 - 2016

ISA Discussion

The base integer ISA is named "I" (prefixed by RV32 or RV64 depending on integer register width), and contains integer computational instructions, integer loads, integer stores, and control-flow instructions;

Integer multiplication and division extension is named "M", and adds instructions to multiply and divide values held in the integer registers;

Standard single-precision floating-point extension is denoted by "F", adds floating-point registers, single-precision computational instructions, and single-precision loads and stores;



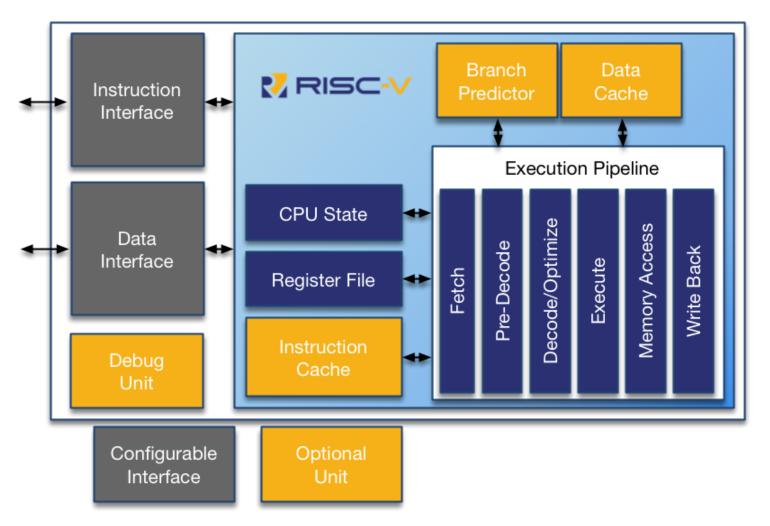
ISA Discussion

31 30 25	24 21	20	19	15 14	12	11 8	7	6	0
funct7	rsź	2	rs1	fı	unct3	rc	1	opco	de R-type
imm[1]	1:0]		rs1	fı	unct3	rc	1	opco	ode I-type
			_						
imm[11:5]	rs^2	2	rs1	fı	unct3	imm	[4:0]	opco	ode S-type
$\operatorname{imm}[12] \operatorname{imm}[10:5]$	rs2	2	rs1	fı	unct3	imm[4:1]	$\operatorname{imm}[11]$	opco	ode B-type
	$\operatorname{imm}[31]$:12]				rc	1	opco	ode U-type
$\operatorname{imm}[20]$ $\operatorname{imm}[1]$	0:1]	$\operatorname{imm}[11]$	imn	n[19:1:	2]	rc	1	opco	ode J-type

Classical 5-Stage Pipelining in RISC-V

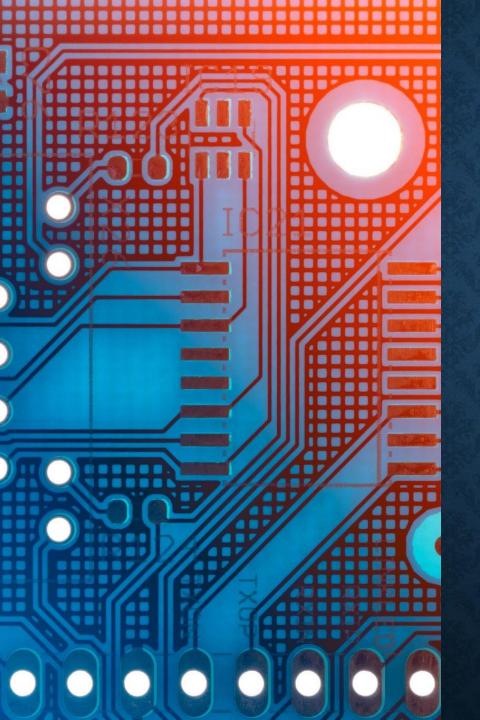
RISC-V Load/Store Architecture

```
R1 <- [1]
R2 <- [2]
R3 <- [3]
```


In the code above, we are performing three load types. In line one, we are storing the address 1 to R1, line 2, we are storing address of 2 to R2 and finally in line 3, we are storing the address 3 to R3.

The RISC Pipeline will look something like this:

Code	Instruction line	Step 1	Step 2	Step 3	Step 4	Step 5	Step 6	Step 7
R1 <- [1]	1	Fetch	Decode	Execute	Memory	Write		
R2 <- [2]	2		Fetch	Decode	Execute	Memory	Write	
R3 <- [3]	3			Fetch	Decode	Execute	Memory	Write

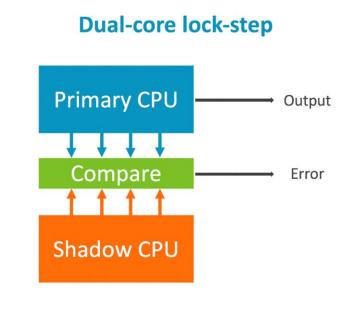

RISC-V based General Processor

MOTIVATION OF DCLS CORE

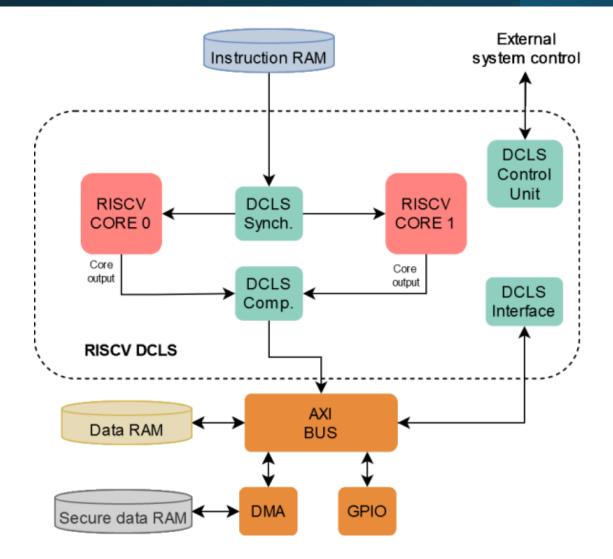
- Dual-core lockstep cores are used to
 - i. Enhance fault tolerance,
 - ii. Improve reliability, and
 - iii. Meet the stringent safety requirements of critical applications.
- They provide a robust and proven approach to building high-reliability computing systems that can withstand hardware faults and environmental challenges.

SOURCES OF FAILURES

• Radiational Issues in ICs (SEUs)


• Memory: There is an accidental trigger that changes the memory state in the system. Common scenarios include a hit by a radiation particle, interference from RF transmitter

• Single Event Latchup (SEL)


• Short-circuits between the power signal and the ground

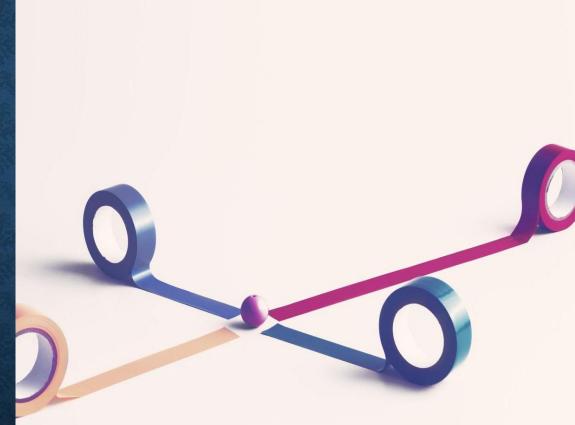
WHAT IS DUAL-CORE LOCKSTEP (DCLS)?

- Dual-core lockstep (DCLS) is a redundancy technique for high-reliability computing used in safety-critical systems like aerospace, automotive, and industrial control systems.
- Both core's internal states & outputs are compared at each clock cycle.
- Any divergence or mismatch between core's states is indicated as an error in the system.

GENERIC DCLS BLOCK DIAGRAM

CHECKPOINT AND ROLLBACK METHODOLOGY

- The checkpoint is an operation that saves a consistent state of the processor in the memory
- The rollback recovers the system from an error by restoring that previous state
- When the Checker detects a mismatch in the CPU's data output the interrupt is launched to perform a rollback.


COMMON MODE FAILURES

- DCLS cannot detect potential failures that can occur at the same point in both cores since the failures do not cause any difference between their outputs.
- These failures are referred to as common mode failures, which cause false match in the DCLS system.

TEMPORAL DIVERSITY

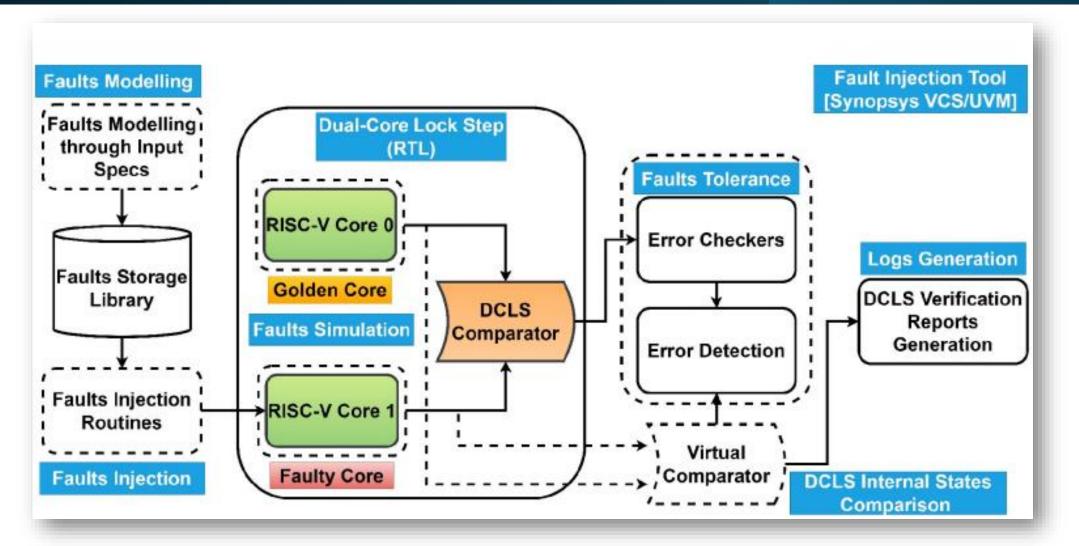
- A common approach to this is delaying the redundant core for few cycles by inserting shift registers into the inputs.
- With a temporal diversity of even a few cycles, it is less likely that an erroneous trigger occurs at the same point of two cores.
- Note that this approach requires resynchronization of outputs from two cores before comparisons.

REFERENCE DESIGN

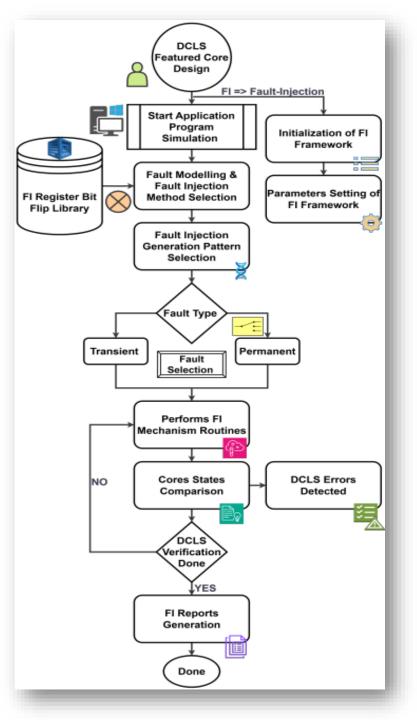
- An Open-Source SweRV-Core with Integrated DCLS Feature
- RV32-IMF architecture where "I" stands for Integer, "M" Multiplication & "F" for floating point
- <u>GitHub chipsalliance/Cores-VeeR-EH1: VeeR EH1</u>
 <u>core</u>

DIFFERENT FAULT INJECTION (FI) TECHNIQUES

Hardware and software-based techniques


This work focus on software-based FI techniques

• Software-based techniques are categorized based on the time of fault-injection, i.e, compile-time, and run-time


Code Modification/Insertion

 RTL of design under verification (DUV) is altered during run-time.

PROPOSED FI FRAMEWORK

FLOW DIAGRAM

38

Faults Modeling

The process of describing and characterizing the types, locations, and behaviors of faults that might arise in SoCs is known as fault modelling.

In the proposed FI framework, faults are modelled using UVM-macros.

The UVM-macros allows backdoor access to DUV internal registers.

Hundred different DCLS internal state signals are accessed in the fault model, for customizing or flipping their existing stored data.

39

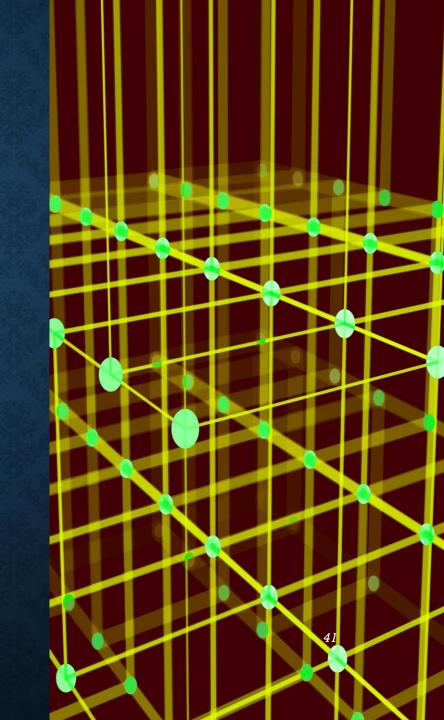
The UVM macros used for faults modelling are: (i) uvm-hdl-deposit, (ii) uvm-hdl-force, (iii) uvm-hdl-force-time, (iv) uvm-hdl-release and (v) uvm-hdl-read.

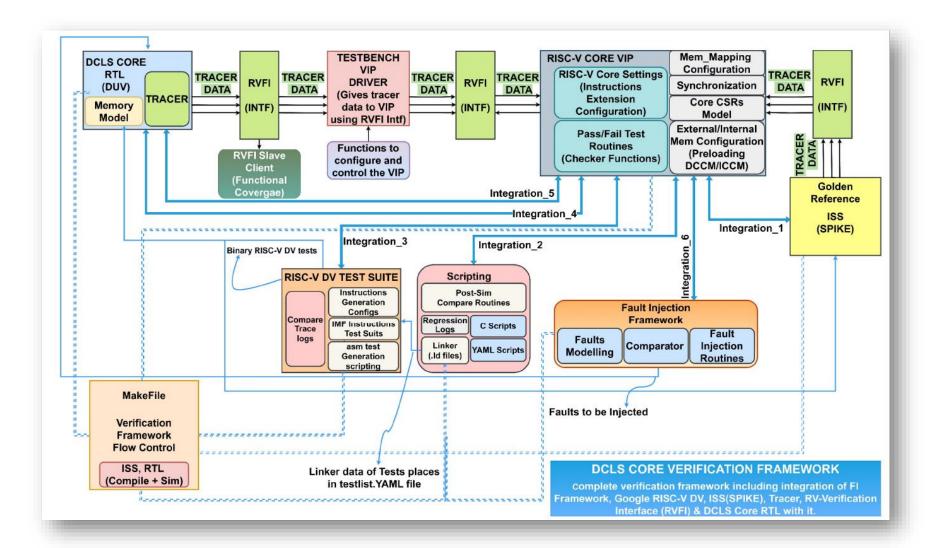
USED APPLICATION CASES

- The applications used to test DCLS functionality is an opensource Test-Suite known as "Google RISC-V DV".
- <u>GitHub chipsalliance/riscv-dv: Random instruction</u> generator for RISC-V processor verification.

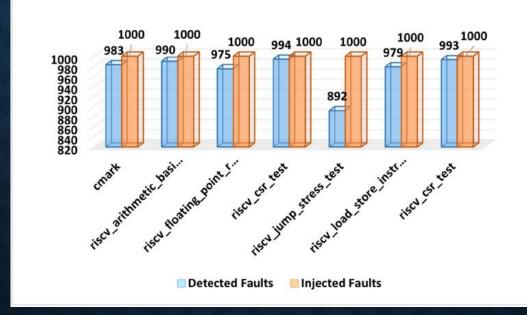
Faults Simulation

Application cases in the form of Google RISC-V DV testsuite are applied to the DUV.


Faults are induced during each application test case simulation.


Simultaneously, the FI routines are also applied to the DUV.

The resulting fault's latency, propagation and severity levels are then analyzed using simulation waveforms data.

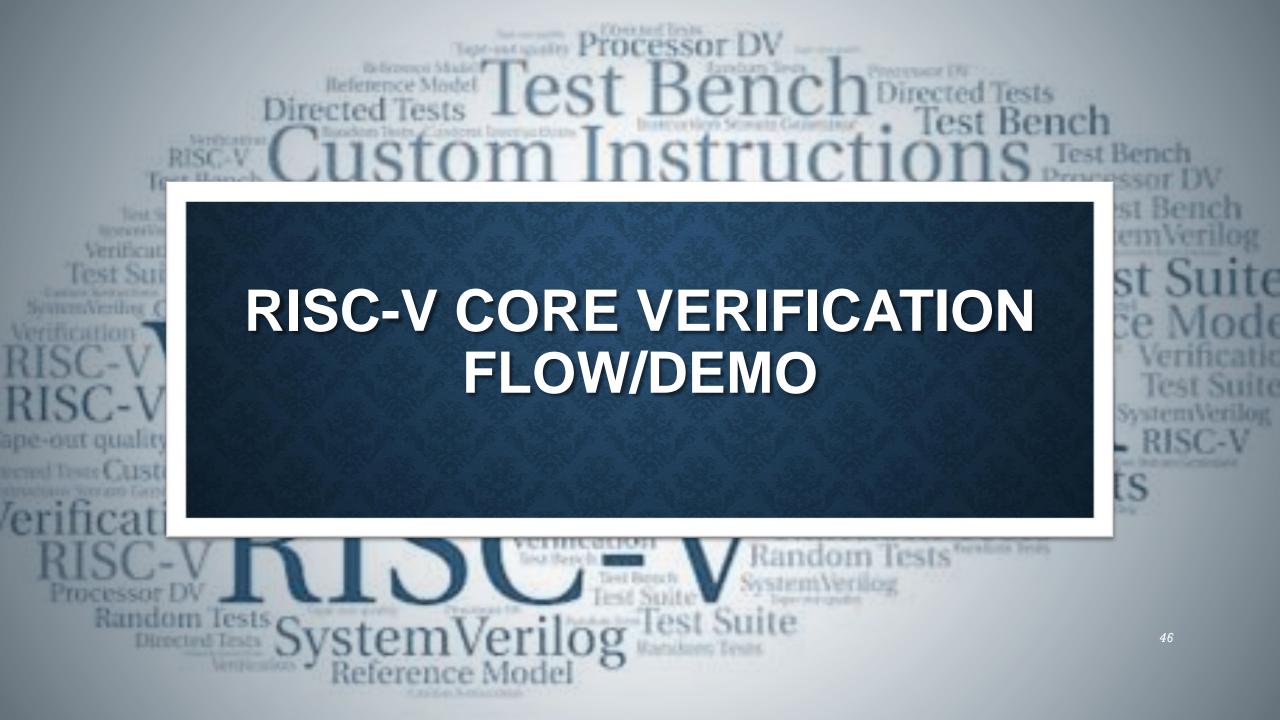


UVM-BASED TESTBENCH

RESULTS

- Approximately 20,000 errors are injected by FI campaigns.
- The DCLS feature successfully detects 98.7% of errors from the overall fault injection routines.
- The application cases and their number of detected versus injected faults are shown below

FUTURE DIRECTIONS


- Add new Fault-Injection scenarios
- Use advanced AI features to model the faults
- Test the enhanced fault-injection framework with different cores architectures

FVDCLS: Functional Verification of RISCV based Dual-Core Lockstep Feature using Fault Injection Mechanism

Muhammad Kashif Minhas, Haroon Waris, and Sajid Baloch Centers of Excellence in Science & Applied Technologies, Pakistan kashifminhas934@gmail.com, haroonwaris@gmail.com, to_baloch@hotmail.com

FVDCLS RESEARCH PAPER

Research paper accepted in VLSI-SoC Conference Morocco, 2024

INTRODUCTION TO RISC-V ISA

- RISC-V (pronounced "risk-five"): An open-source implementation of a reduced instruction set computing (RISC) based instruction set architecture (ISA)
- Permitting any person or group to construct compatible computers
- Originated in 2010 by researchers at UC Berkeley
- RISC-V ISA includes: A small base integer ISA, usable by itself as a base for customized accelerators or for educational purposes, and
 - ✓ Optional standard extensions, to support general-purpose software development
 - ✓ Optional customer extensions

INTRODUCTION TO RISC-V ISA

- ISA support is given by RV + word-width + extensions supported permitting any person or group to construct compatible computers
 - ✓ *RV32I means 32-bit RISC-V with support for the I(Integer) instruction set*
 - A mandatory Base integer ISA I: Integer instructions
 - Standard Extensions
 - M: Integer Multiplication and Division
 A: Atomic Instructions
 F: Single-Precision Floating-Point
 D: Double-Precision Floating-Point
 C: Compressed Instructions (16 bit)

XLEN-1		0
	x0 / zero	
	x1	
	x2	
	x3	
	x4	
	x 5	
	x6	
	x7	
	x8	
	x9	
	x10	
	x11	
	x12	
	x13	
	x14	
	x15	
	x16	
	x17	
	x18	
	x19	
	x20	
	x21	
	x22	
	x23	
	x24	
	x25	
	x26	
	x27	
	x28	
	x29	
	x30	
	x31	
	XLEN	
XLEN-1		0
	pc	
	XLEN	

RV32/64 PROCESSOR REGISTER SET

• 32 32/64-bit integer registers (x0-x31)

x0 always contains a 0

• 32 floating-point (FP) registers (f0-f31)

 Each can contain a single- or double-precision FP value (32-bit or 64-bit IEEE FP)

• Program counter (pc) which holds the address of the current instruction

DIFFERENT RISC-V INSTRUCTIONS

Category	Instruction	Example	Meaning	Comments
	Add	add x5, x6, x7	x5 = x6 + x7	Three register operands; add
Arithmetic	Subtract	sub x5, x6, x7	x5 = x6 - x7	Three register operands; subtract
Arithmetic	Add immediate	addi x5, x6, 20	x5 = x6 + 20	Used to add constants
	Load word	lw x5, 40(x6)	x5 = Memory[x6 + 40]	Word from memory to register
	Load word, unsigned	lwu x5, 40(x6)	x5 = Memory[x6 + 40]	Unsigned word from memory to register
	Store word	sw x5, 40(x6)	Memory[x6 + 40] = x5	Word from register to memory
	Load halfword	lh x5, 40(x6)	x5 = Memory[x6 + 40]	Halfword from memory to register
Data transfer	Load halfword, unsigned	lhu x5, 40(x6)	x5 = Memory[x6 + 40]	Unsigned halfword from memory to register
	Store halfword	sh x5, 40(x6)	Memory[x6 + 40] = x5	Halfword from register to memory
	Load byte	lb x5, 40(x6)	x5 = Memory[x6 + 40]	Byte from memory to register
	Load byte, unsigned	lbu x5, 40(x6)	x5 = Memory[x6 + 40]	Byte unsigned from memory to register
	Store byte	sb x5, 40(x6)	Memory[x6 + 40] = x5	Byte from register to memory
	Load reserved	lr.d x5, (x6)	x5 = Memory[x6]	Load; 1st half of atomic swap
	Store conditional	sc.d x7, x5, (x6)	Memory[x6] = x5; x7 = 0/1	Store; 2nd half of atomic swap
	Load upper immediate	lui x5, 0x12345	x5 = 0x12345000	Loads 20-bit constant shifted left 12 bits
	And	and x5, x6, x7	x5 = x6 & x7	Three reg. operands; bit-by-bit AND
	Inclusive or	or x5, x6, x8	x5 = x6 x8	Three reg. operands; bit-by-bit OR
Logical	Exclusive or	xor x5, x6, x9	$x5 = x6 ^ x9$	Three reg. operands; bit-by-bit XOR
Logical	And immediate	andi x5, x6, 20	x5 = x6 & 20	Bit-by-bit AND reg. with constant

DIFFERENT RISC-V INSTRUCTIONS

Category	Instruction	Example	Meaning	Comments
	Shift left logical	sll x5, x6, x7	x5 = x6 << x7	Shift left by register
	Shift right logical	srl x5, x6, x7	$x5 = x6 \gg x7$	Shift right by register
	Shift right arithmetic	sra x5, x6, x7	$x5 = x6 \gg x7$	Arithmetic shift right by register
Shift	Shift left logical immediate	slli x5, x6, 3	x5 = x6 << 3	Shift left by immediate
	Shift right logical immediate	srli x5, x6, 3	x5 = x6 >> 3	Shift right by immediate
	Shift right arithmetic immediate	srai x5, x6, 3	x5 = x6 >> 3	Arithmetic shift right by immediate
	Branch if equal	beq x5, x6, 100	if (x5 == x6) go to PC+100	PC-relative branch if registers equal
	Branch if not equal	bne x5, x6, 100	if (x5 != x6) go to PC+100	PC-relative branch if registers not equal
	Branch if less than	blt x5, x6, 100	if (x5 < x6) go to PC+100	PC-relative branch if registers less
Conditional	Branch if greater or equal	bge x5, x6, 100	if (x5 >= x6) go to PC+100	PC-relative branch if registers greater or equal
branch	Branch if less, unsigned	bltu x5, x6, 100	if (x5 < x6) go to PC+100	PC-relative branch if registers less, unsigned
	Branch if greater or equal, unsigned	bgeu x5, x6, 100	if (x5 >= x6) go to PC+100	PC-relative branch if registers greater or equal, unsigned
Unconditional	Jump and link	jal x1, 100	x1 = PC+4; go to PC+100	PC-relative procedure call
branch	Jump and link register	jalr x1, 100(x5)	x1 = PC+4; go to $x5+100$	Procedure return; indirect call

RISC-V GREEN CARD

Base	e Integer	Inst	ructio	ons: RV	32I, RI	/64I, and RV.	64I, and RV128I			RV Privileged Instructions				
Category	Name			RV32I Ba		+RV{64			Categor		Name		V mnem	onic
Loads	Load Byte	Ι	LB	rd,rs1	,imm				CSR Acc	cess /	Atomic R/W	CSRRW	rd,csr	,rs1
Lo	ad Halfword	I	LH	rd,rs1	,imm				A	tomic Rea	ad & Set Bit	CSRRS	rd,csr	,rs1
	Load Word	I	LW	rd,rs1	,imm	$L{D Q}$ rd	,rs1,i	imm	Ato	mic Read	& Clear Bit	CSRRC	rd,csr	rs1,
Load By	te Unsigned	I	LBU	rd,rs1	,imm					Atom	ic R/W Imm	CSRRWI	rd,csr	,imm
Load H	alf Unsigned	I	LHU	rd,rs1	, imm	L{W D}U rd	,rs1,i	imm	Atomic	Read &	Set Bit Imm	CSRRSI	rd,csr	,imm
Stores	Store Byte	S	SB	rs1,rs	2,imm				Atomic R	ead & Cl	ear Bit Imm	CSRRCI	rd,csr	,imm
Sto	re Halfword	S	SH	rs1,rs	2,imm				Change	Level	Env. Call	ECALL		
	Store Word	S	SW	rs1,rs	2,imm	S{D Q} rs	1,rs2,	,imm	Envi	ronment	Breakpoint	EBREAK		
Shifts	Shift Left	R	SLL	rd,rs1	rs2	SLL{W D} rd	,rs1,1	rs2		Environr	nent Return	ERET		
	t Immediate	I	SLLI	rd,rs1		SLLI{W D} rd			Trap Re					
onne Eor	Shift Right		SRL	rd,rs1	-		,rs1,1		-		Hypervisor			
Shift Righ	t Immediate	I	SRLI	rd,rs1		SRLI{W D} rd								
-	t Arithmetic	R	SRA	rd,rs1			,rs1,1				for Interrupt			
	t Arith Imm	I	SRAI	rd,rs1		SRAI{W D} rd			MMU		visor FENCE		.VM rs1	
Arithmeti		R	ADD	rd,rs1			,rs1,1		<u> </u>	Caper		21 2000		
) Immediate	I	ADDI	rd,rs1		ADDI{W D} rd								
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	SUBtract	R	SUB	rd,rs1		SUB{W D} rd								
Land		U	LUI	rd,imm	/102	le l			cod (16	bit) T	nstruction	n Exto	ncionul	
	Upper Imm		AUIPC					Fmt	Sea (10	RVC	ISLIUCIIO		/I equiva	
Logical	r Imm to PC XOR	R	XOR				ame Word	CL	C.LW		1/			
-				rd,rs1							1',imm		,rs1',i	
XO	R Immediate	I	XORI	rd,rs1		Load Wo		CI	C.LWSP	rd,imm			sp,imm*	
	OR	R	OR	rd,rs1		Load D		CL	C.LD		1′,imm		,rs1',i	
OF	۲ Immediate	I	ORI	rd,rs1		Load Dou		CI	C.LDSP	rd,imm			sp,imm*	
	AND	R	AND	rd,rs1	,rs2	Load	l Quad	CL	C.LQ	rd',rs	1′,imm	LQ rd'	,rs1',i	mm*16
) Immediate	I	ANDI	rd,rs1	,imm	Load Qu		CI	C.LQSP	rd,imm	1.		sp,imm*	
Compare	Set <	R	SLT	rd,rs1	,rs2	Stores Store	Word	CS	C.SW	rs1′,r	s2′,imm	SW rs1	',rs2',	imm*4
Set <	< Immediate	I	SLTI	rd,rs1	,imm	Store Wo	ord SP		C.SWSP	rs2,im	m	SW rs2	,sp,imm	*4
Set	< Unsigned	R	SLTU	rd,rs1	,rs2	Store D	Double	CS	C.SD	rs1′,r	s2′,imm	SD rs1	',rs2',	imm*8
Set < Im	ım Unsigned	I	SLTIU	rd,rs1	,imm	Store Dou	ble SP	CSS	C.SDSP	rs2,im	m	SD rs2	,sp,imm	*8
Branches	Branch =	SB	BEQ	rs1,rs	2,imm	Store	Quad	CS	c.so	rs1',r	s2',imm	SQ rs1	',rs2',	imm*1
	Branch ≠	SB	BNE	rs1,rs	2,imm	Store Qu	ad SP	CSS	C.SQSP	rs2,im	m	SQ rs2	,sp,imm	*16
	Branch <	SB	BLT	rs1,rs	2,imm	Arithmetic	ADD	CR	C.ADD	rd,	rs1		rd,rd,r	
	Branch ≥	SB	BGE	rs1,rs	2,imm	ADD	Word	CR	C.ADDW	rd,	rs1	ADDW	rd,rd,i	mm
Branch	< Unsigned	SB	BLTU	rs1,rs	2,imm	ADD Imm	ediate	CI	C.ADDI	rd,	imm	ADDI	rd,rd,i	mm
Branch	≥ Unsigned	SB	BGEU	rs1,rs		ADD Word	d Imm	CI	C.ADDIW		imm		rd,rd,i	
Jump & Li	nk J&L	UJ	JAL	rd,imm		ADD SP Imn	n * 16	CI	C.ADDI1	6SP x0,	imm	ADDI	sp,sp,i	mm*16
Jump & L	ink Register	τυ	JALR	rd,rs1	,imm	ADD SP Im	nm * 4	CIW	C.ADDI4:	SPN rd'	,imm	ADDI	rd',sp,	imm*4
Synch S	ynch thread	I	FENCE			Load Imm	ediate	CI	C.LI	rd,	imm	ADDI	rd,x0,i	mm
Synch	Instr & Data	I	FENCE	.1		Load Upper	r Imm	CI	C.LUI	rd,	imm	LUI	rd,imm	
System S	ystem CALL	Ι	SCALL	i.		1	MoVe	CR	C.MV	rd,	rs1	ADD	rd,rs1,	x0
Sy	stem BREAK	I	SBREA	К			SUB	CR	C.SUB	rd,			rd,rd,r	
Counters	ReaD CYCLE	I	RDCYC	LE r	d	Shifts Shift Lef	ft Imm	CI	C.SLLI		imm		rd,rd,i	
ReaD CYCL	E upper Half	I	RDCYC	LEH r	d	Branches Bran	nch=0	CB	C.BEQZ		',imm		rs1',x0	
	ReaD TIME	I	RDTIM	E r	d	Bra	nch≠0	CB	C.BNEZ		,imm	~	rs1',x0	-
ReaD TIM	E upper Half	I	RDTIM			Jump	Jump	CJ	C.J	imm	-		x0,imm	
	STR RETired	I	RDINS			Jump Re	egister	CR	C.JR		rs1		x0,rs1,	0
	R upper Half	I		TRETH r		Jump & Link		CJ	C.JAL	imm			ra,imm	
		-				Jump & Link Re		CR	C.JALR	rs1			ra,rs1,	0
						System Env. E	-	CI	C.EBREAL			EBREAK		-
		2-64	Inct-	uction F	ormate	u *					C) Instance			
								CR	15 14 13	12 11	C) Instruc 10 9 8 7	6 5	4 3 2	1 0
	30 25 24	21 rs		19 15 rs1	14 12 funct3		0	CI	funct		rd/rs1		rs2	op
R fr	nct7								funct3	imm	rd/rs1		mm	

funct3

funct3

funct3

funct3

funct3

imm

imm

imm

offset

imm

rs1'

rs1'

rs1'

jump target

offset

imm

imm

rd'

rd'

rs2'

op

op

op

op

op

op

	31 30	25	24 21	20	19	15 14	12	11 8	1	0	0 0	Γ
R	funct7		rs2		rs1	funct	3	re	1	opcod		- 1
I		imm[11:	:0]		rs1	funct	3	re	1	opcod	0	ss
s	imm[11:	5]	rs2		rs1	funct	3	imm	[4:0]	opcod	C	IW
SB	imm[12] imr	n[10:5]	rs2		rs1	funct	3	imm[4:1]	imm[11]	opcod		
υ			imm[31:1	2]				re	1	opcod	e C	5
נט	imm[20]	imm[10:	1] in	m[11]	imm	[19:12]		re	1	opcod	e C	B∣
											_ C.	յլ

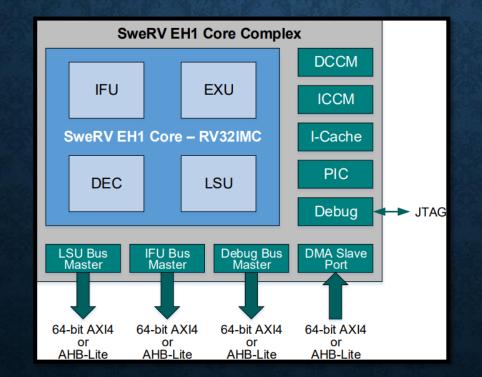
Free & Open $\mathbb{R} = \mathbb{R} = \mathbb{C} - \mathbb{C}$ Reference Card (riscv.org) (2)

	Loa Sto Swa Add
	Log Min
RISC-V	Cat Mov
GREEN CARD	Con

			Optional Multiply-Divide	e Instruc			
Category	Name	Fmt	RV32M (Multiply-Divide)		+RV{6		
Multiply	MULtiply	R	MUL rd,rs1,rs2	MUL{W D	} 1	rd,rs1,rs2	
	MULtiply upper Half		MULH rd,rs1,rs2				
	JLtiply Half Sign/Uns		MULHSU rd,rs1,rs2				
	tiply upper Half Uns		MULHU rd,rs1,rs2	DTV(WID	, ,	nd wal wal	
Divide	DIVide United	R	DIV rd,rs1,rs2	DIV{W D	} 1	rd,rs1,rs2	
Remainde	DIVide Unsigned REMainder	R	DIVU rd,rs1,rs2 REM rd,rs1,rs2	REM{W D	, ,	rd,rs1,rs2	
	REMainder Unsigned	R	REM rd,rs1,rs2 REMU rd,rs1,rs2		-		
				REMU { W	D} 1	rd,rs1,rs2	
Category	Name	Fmt	A Atomic Instruction Extensi RV32A (Atomic)	OII: RVA	+RV{6-	1 1 28]	
Load	Load Reserved	R	LR.W rd,rs1	LR.{DQ	-	rd,rs1	
Store	Store Conditional	R	SC.W rd,rs1,rs2	SC.{DQ		rd,rs1,rs2	
Swap	SWAP		AMOSWAP.W rd,rs1,rs2	AMOSWAP	,	rd,rs1,rs2	
Add	ADD		AMOADD.W rd,rs1,rs2	AMOADD.		rd,rs1,rs2	
Logical	XOR		AMOXOR.W rd,rs1,rs2	AMOXOR.	(14)	rd,rs1,rs2	
_	AND	R	AMOAND.W rd,rs1,rs2	AMOAND.		rd,rs1,rs2	
	OR	R	AMOOR.W rd,rs1,rs2	AMOOR. {	,	rd,rs1,rs2	
Min/Max	MINimum	R	AMOMIN.W rd,rs1,rs2	AMOMIN.		rd,rs1,rs2	
	MAXimum	R	AMOMAX.W rd,rs1,rs2	AMOMAX.		rd,rs1,rs2	
	MINimum Unsigned	R	AMOMINU.W rd,rs1,rs2			rd,rs1,rs2	
	MAXimum Unsigned	R	AMOMAXU.W rd,rs1,rs2			rd,rs1,rs2	
Tł	hree Optional Fl	oatii	ng-Point Instruction Extension				
Category	Name	Fmt			+RV{6		
Move	Move from Integer	R	FMV.{H S}.X rd,rs1	FMV.{D		rd,rs1	
	Move to Integer	R	FMV.X.{H S} rd,rs1	FMV.X.{		rd,rs1	
Convert	Convert from Int	R	FCVT.{H S D Q}.W rd,rs1	FCVT. {H	S D Q}.	<pre>.{L T} rd,rs1</pre>	
Conve	rt from Int Unsigned	R	FCVT.{H S D Q}.WU rd,rs1			.{L T}U rd,rs1	
	Convert to Int	R	FCVT.W. {H S D Q} rd,rs1			S D Q} rd,rs1	
Con	vert to Int Unsigned	R	FCVT.WU.{H S D Q} rd,rs1	FCVT.{L	T}U.{H	S D Q} rd,rs1	
Load	Load	I	FL{W,D,Q} rd,rs1,imm			RISC-V Callin	ng Convention
Store	Store	S	FS{W,D,Q} rs1,rs2,imm	Register	ABI Nam		Description
Arithmeti		R	FADD.{S D Q} rd,rs1,rs2	x0	zero		Hard-wired zero
	SUBtract	R	FSUB.{S D Q} rd,rs1,rs2	×1	ra	Caller	Return address
	MULtiply	R	FMUL.{S D Q} rd,rs1,rs2	x2	sp	Callee	Stack pointer
	DIVide		FDIV.{S D Q} rd,rs1,rs2	x3	gp		Global pointer
Mul-Add	SQuare RooT Multiply-ADD	R	FSQRT.{S D Q} rd,rs1	x4 x5-7	tp +0-2	Caller	Thread pointer Temporaries
	Multiply-SUBtract		FMADD.{S D Q} rd,rs1,rs2,rs3		t0-2 s0/fp	Callee	Saved register/frame pointer
Negati	ve Multiply-SUBtract	R	FMSUB.{S D Q} rd,rs1,rs2,rs3 FNMSUB.{S D Q} rd,rs1,rs2,rs3		su/ip s1	Callee	Saved register
-	gative Multiply-ADD	R	FNMADD.{S D Q} rd,rs1,rs2,rs3		a0-1	Caller	Function arguments/return values
Sign Inje		R	FSGNJ.{S D Q} rd,rs1,rs2	x12-17	a0-1 a2-7	Caller	Function arguments
	egative SiGN source	R	$FSGNJN.{S D Q} rd,rs1,rs2$	x18-27	s2-11	Callee	Saved registers
	Xor SiGN source	R	FSGNJX. $\{S D Q\}$ rd,rs1,rs2	x28-31	t3-t6	Caller	Temporaries
Min/Max	MINimum	R	FMIN.{SDQ} rd,rs1,rs2	f0-7	ft0-7	Caller	FP temporaries
-	MAXimum	R	FMAX.{S D Q} rd,rs1,rs2	f8-9	fs0-1	Callee	FP saved registers
Compare	Compare Float =	R	FEQ.{S D Q} rd,rs1,rs2	f10-11	fa0-1	Caller	FP arguments/return values
	Compare Float <	R	FLT.{S D Q} rd,rs1,rs2	f12-17	fa2-7	Caller	FP arguments
	Compare Float ≤	R	FLE.{S D Q} rd,rs1,rs2	f18-27	fs2-11	Callee	FP saved registers
Categoriz	ation Classify Type	R	FCLASS.{S D Q} rd,rs1	f28-31	ft8-11	Caller	FP temporaries
	tion Read Status	R	FRCSR rd				
-	Read Rounding Mode	R	FRRM rd				
	Read Flags	R	FRFLAGS rd				
	Swap Status Reg	R	FSCSR rd,rs1				
s	wap Rounding Mode	R	FSRM rd,rs1				
	Swap Flags	R	FSFLAGS rd,rs1				
Swap F	Rounding Mode Imm	I	FSRMI rd,imm				
	Swap Flags Imm	I	FSFLAGSI rd,imm				

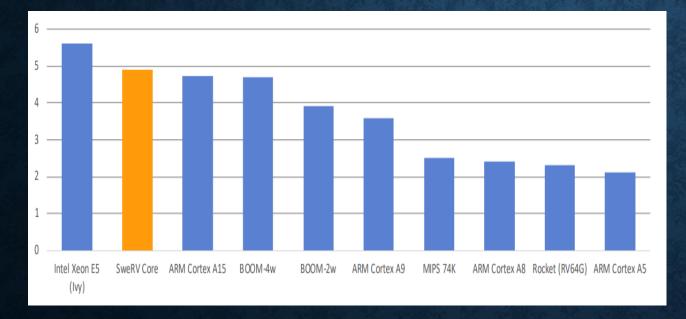
53

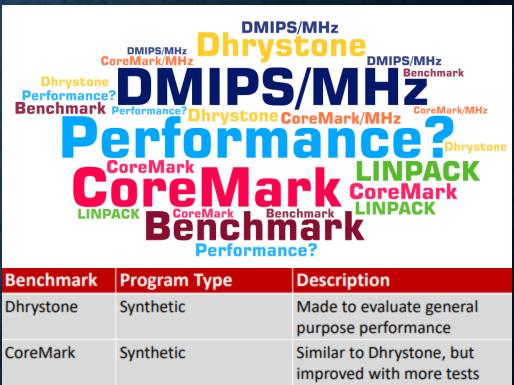
RISC-V INSTRUCTION FORMATS


Specification from RISC-V website

✓ https://riscv.org/specifications/

31 25	24 20) 19	15 14		12 11		76		0
funct7	rs2	rs1		funct3		rd		opcode	
7	5	5		3		5		7	
0000000	$\operatorname{src2}$	src1	AD	D/SLT/	SLTU	dest		OP	
0000000	src2	src1	AN	D/OR/2	XOR	dest		OP	
0000000	$\operatorname{src2}$	src1		SLL/SR	L	dest		OP	
0100000	$\operatorname{src2}$	src1		SUB/SR	A	dest		OP	
31		20 19		15 14 12	11	76		0	
	$\operatorname{imm}[11:0]$		rs1	funct3	\mathbf{rd}		opcode		
	12		5	3	5		7		
	offset[11:0]		base	width	dest		LOAD		
Sinte a									
31	25 24	20 19		15 14 12	11	76		0	
ir	nm[11:5]	rs2	rs1	funct3	imm[4:()]	opcode		54
	7	5	5	3	5		7		
0	ffset[11:5]	src	base	width	offset[4:	0]	STORE		


DESIGN UNDER VERIFICATION


- <u>https://github.com/chipsalliance/Cores-SweRV</u>
- The Western Digital SWERV Core EH1 is a 32-bit, dual-issue, 9-stage pipeline core.
- Dual-issue: each clock cycle the processor can move two instructions from one stage of the pipeline to the next stage.

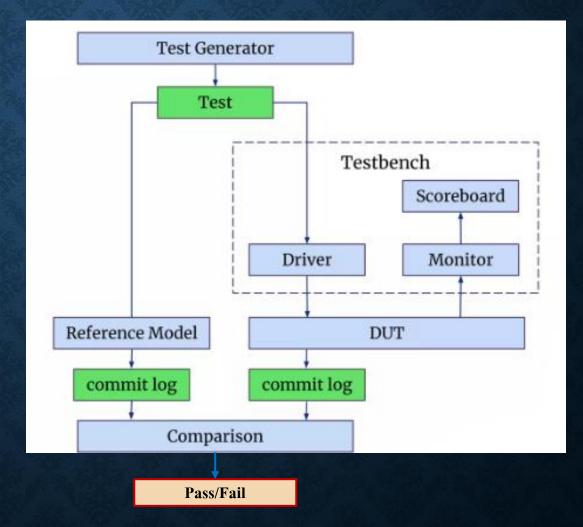
RISC-V PROCESSOR BENCHMARKING

- Benchmarks determine processor performance by running programs that exercise the hardware.
- This enables comparison of different processors.

4.9 CoreMark/MHz (The CoreMark Score is the number of iterations completed per second)
 2.3 DMIPs/MHz (It's a measure of how many operations the CPU can perform in a single clock cycle)

MOTIVATION

 Accelerate the verification of RISC-V cores by incorporating open-source verification solutions instead of re-inventing the wheel.



BUILDING BLOCKS OF CPU VERIFICATION

A CPU level design verification environment Includes;

- DUT RTL
- Testbench
 - Instantiates RTL
 - Driver, Monitor and Scoreboard
- Tests Generator
- Golden Reference Model

Building all these blocks from scratch takes a lot of time and resources

OPEN-SOURCE RISC-V ECOSYSTEM

Google RISC-V DV

- An open-source constraint random instruction Generator for RISC-V processor verification
- Contains Open-source RISC-V Test-Suite
- RISC-V Toolchain

Spike ISS

Open-source RISC-V ISA simulator which implements a functional model of RISC-V Core

SWERV-EH1

The Western Digital SWERV Core EH-1 is a 32-bit, dual-issue, 9-stage pipeline core

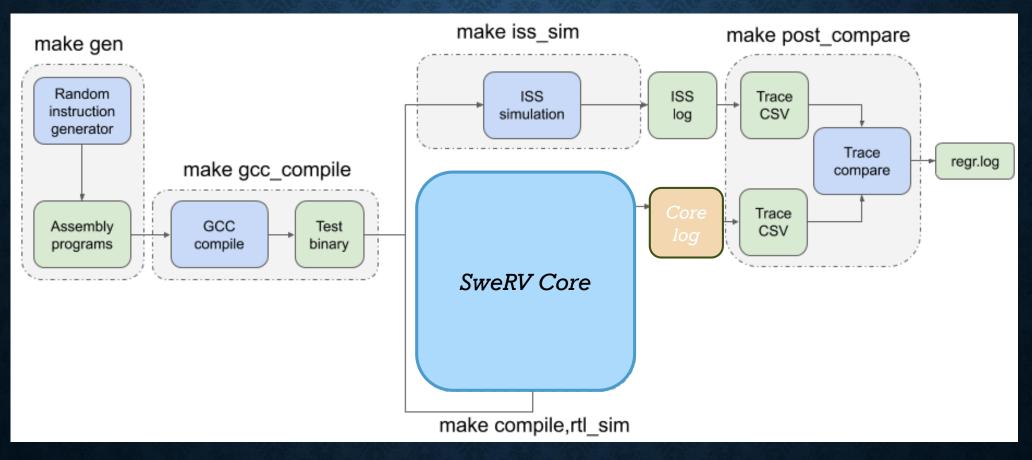
SPECIFICATIONS AND SOFTWARE FROM RISCV.ORG AND GITHUB.COM/RISCV

Open-Source RISC-V processor verification framework

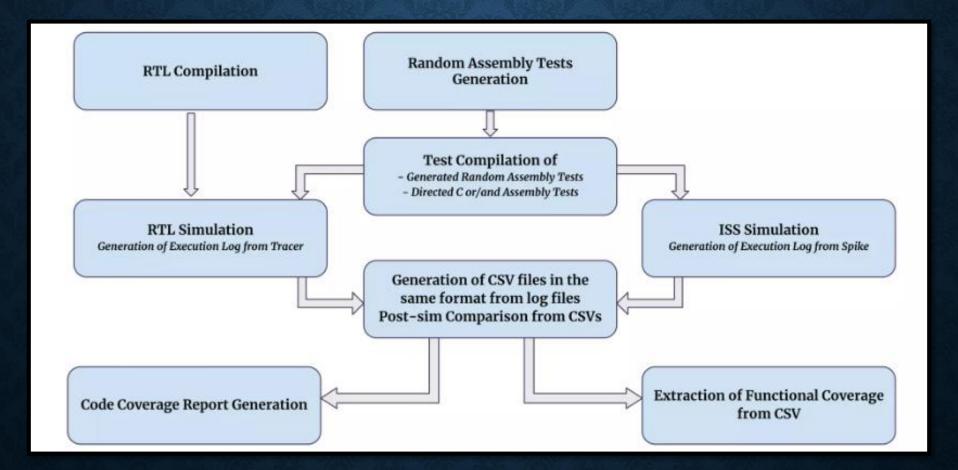
https://github.com/Lampro-Mellon/LM-RISCV-DV

RISC-V software includes

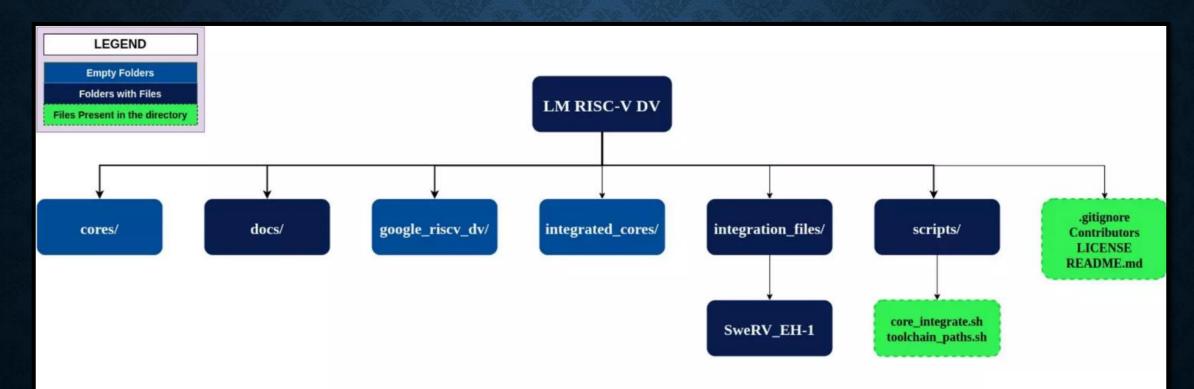
GNU Compiler Collection (GCC) toolchain (with GDB, the debugger)


- https://github.com/riscv/riscv-tools
 - A simulator ("Spike")
- ✓ https://github.com/riscv/riscv-isa-sim

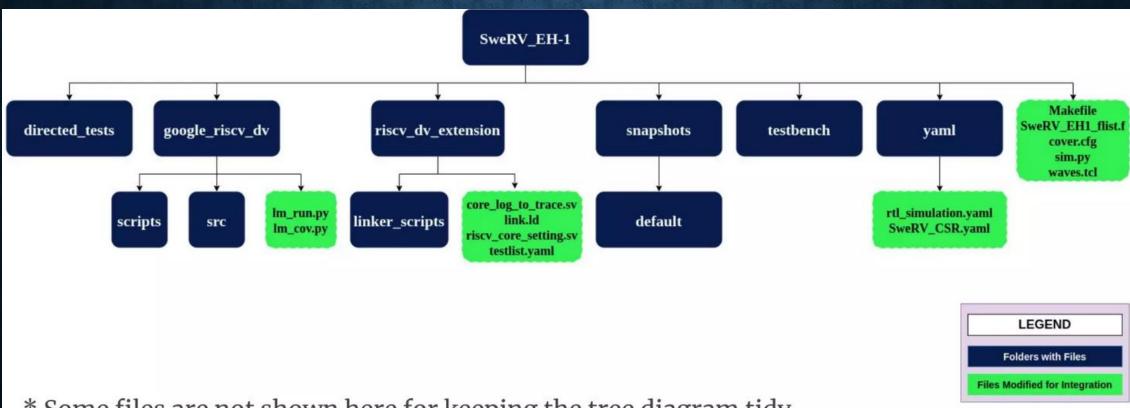
• A list from


https://github.com/riscvarchive/riscv-cores-list

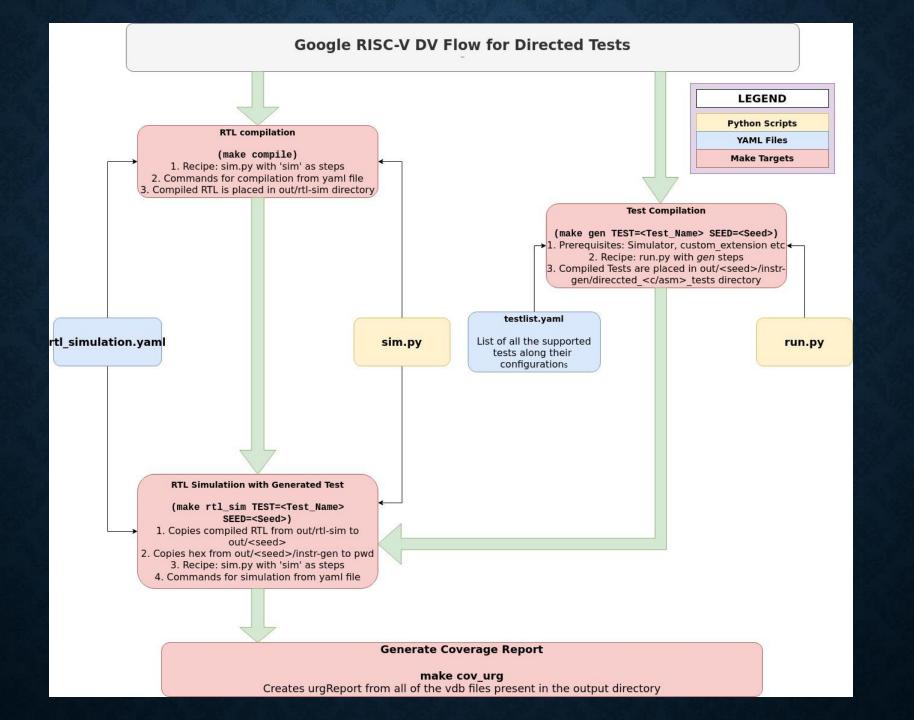
FLOW DIAGRAM

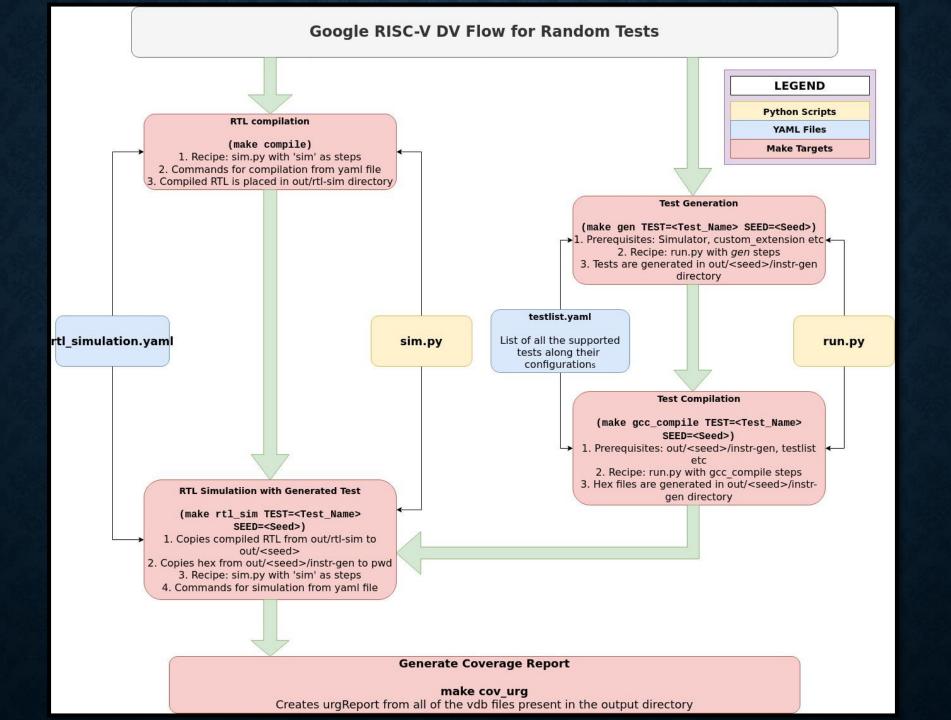

FLOW DIAGRAM

FLOW DIAGRAM WITH COVERAGE

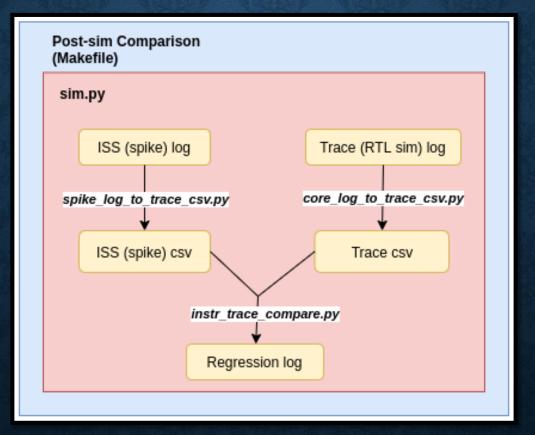


RISC-V DV REPOSITORY

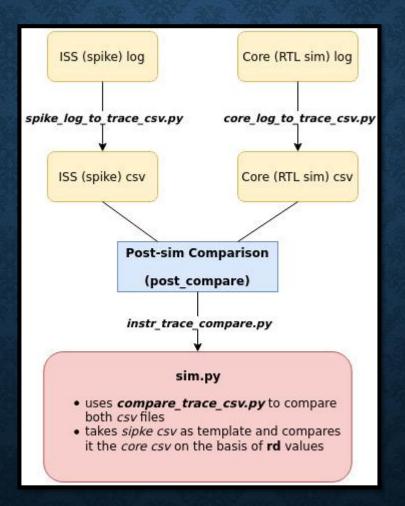



* Some files are not shown here for keeping the tree diagram tidy

FILES FOR INTEGRATION



* Some files are not shown here for keeping the tree diagram tidy



POST-COMPARISON STEPS

POST-COMPARISON STEPS

INITIAL SETTINGS

TOOLS SETTINGS

- Add the VCS compiler into the rtl_simulation.yaml file and add the flist there.
- SweRV_flist.f file contains all the files included in the design hierarchy.
- SweRV flist & rtl_simulation.yaml file is shown in fig:

+incdir+\${PRJ_DIR}/rtl/lib
+incdir+\${PRJ_DIR}/rtl/include
+incdir+\${PRJ_DIR}/snapshots/default

+libext+.v

// Including Defines Files

\${PRJ_DIR}/snapshots/default/common_defines.vh
\${PRJ_DIR}/rtl/include/swerv_types.sv

// Including Design Files

\${PRJ_DIR}/rtl/swerv_wrapper.sv \${PRJ_DIR}/rtl/mem.sv \${PRJ_DIR}/rtl/pic_ctrl.sv \${PRJ_DIR}/rtl/swerv.sv \${PRJ_DIR}/rtl/dma_ctrl.sv \${PRJ_DIR}/rtl/ifu/ifu_aln_ctl.sv \${PRJ_DIR}/rtl/ifu/ifu_compress_ctl.sv \${PRJ_DIR}/rtl/ifu/ifu_ifc_ctl.sv \${PRJ_DIR}/rtl/ifu/ifu_ifc_ctl.sv \${PRJ_DIR}/rtl/ifu/ifu_ic_mem.sv \${PRJ_DIR}/rtl/ifu/ifu_ic_mem.sv \${PRJ_DIR}/rtl/ifu/ifu_ic_mem.sv \${PRJ_DIR}/rtl/ifu/ifu_ic_mem.sv \${PRJ_DIR}/rtl/ifu/ifu_ic_mem.sv \${PRJ_DIR}/rtl/ifu/ifu_ic_mem.sv \${PRJ_DIR}/rtl/ifu/ifu_ic_mem.sv

tool: vc compile: cmd: - "vcs -full64 -LDFLAGS '-Wl,--no-as-needed' -assert svaext -sverilog +error+500 <cov opts> -timescale=1ns/10ps -f SweRV_EH1_flist.f -Mdir=<out>/vcs simv.csrc -o <out>/vcs simv -l <out>/compile.log -lca -kdb <cmp opts> <wave opts>" wave opts: > -debug access+all -ucli -do waves.tcl cov opts: > -cm line+tgl+branch -cm_hier cover.cfg -cm dir <out>/test.vdb sim: cmd: > env SIM DIR=<sim dir> <out>/vcs simv +vcs+lic+wait <sim opts> <wave opts> <cov opts> +tracer file base=<sim dir>/trace core -l <sim dir>/sim.log wave opts: > -ucli -do <cwd>/waves.tcl cov opts: > -cm line+tgl+branch -cm_name test_<test_name>_<iteration> -cm dir <out>/test.vdb tool: verilator compile: cmd: - "verilator --cc -CFLAGS \"-std=c++11\" -Wno-UNOPTFLAT -I/testbench -f flist verilator.f --top-module tb top -exe test tb top.cpp --autoflush --trace -f testbench veri.f" - "cp ./testbench/test tb top.cpp obj dir" - "make -C obj dir -f Vtb top.mk OPT FAST=\"-02\"" sim: cmd: > ./obj_dir/Vtb_top +dumpon >><sim_dir>/sim.log env SIM DIR=<sim dir>

<sim_opts>

l <sim dirs/sim loo

+tracer_file_base=<sim_dir>/trace_core

RISC-V CORE SETTINGS

 Configure the riscv_core_setting.sv file according to SweRV core parameters e.g, mode, supported ISA etc.

// Parameter for SATP mode, set to BARE if address translation is not supported
parameter satp_mode_t SATP_MODE = BARE;

// Supported Privileged mode privileged_mode_t supported_privileged_mode[] = {MACHINE_MODE};

// Unsupported instructions
riscv_instr_name_t unsupported_instr[];

// ISA supported by the processor riscv_instr_group_t supported_isa[\$] = {RV32I, RV32M, RV32C};

//To do (): Add RV32C after fixing post compare for RV32C

// Interrupt mode support
mtvec_mode_t supported_interrupt_mode[\$] = {DIRECT, VECTORED};

// The number of interrupt vectors to be generated, only used if VECTORED interrupt mode is
// supported
int max_interrupt_vector_num = 16;

// Physical memory protection support
bit support_pmp = 0;

// Debug mode support
bit support_debug_mode = 0;

// Support delegate trap to user mode
bit support_umode_trap = 0;

// Support sfence.vma instruction
bit support_sfence = 0;

// Support unaligned load/store
bit support_unaligned_load_store = 1'b1;

// GPR setting
parameter int NUM_FLOAT_GPR = 32;
parameter int NUM_GPR = 32;
parameter int NUM_VEC_GPR = 32;

// // Vector extension configuration | Not implemented in SweRV-EH1 //

// Parameter for vector extension
parameter int VECTOR_EXTENSION_ENABLE = 0;

STANDARD RISC-V SweRV CSRs CONFIGURATIONS

- Configure all the SweRV core CSRs with bit fields in the SweRV_CSR.yaml file.
- Screenshot of the SweRV mstatus & mie CSRs is shown in fig:

MSTATUS csr: mstatus description: > Machine status address: 0x300 privilege mode: M rv32: - field name: mie description: > M-mode interrupt enable type: WARL reset val: 0 msb: 3 lsb: 3 - field name: mpie description: > Previous value of interrupt-enable bit type: WARL reset val: 0 msb: 7 lsb: 7 - field name: mpp0 desription : > Previous privilege mode type: R reset_val: 0x1 msb: 11 lsb: 11 - field name: mpp1 desription : > Previous privilege mode type: R reset_val: 0x1 msb: 12 lsb: 12 field name: mprv description: > Modify Privilege (Loads and stores use MPP for privilege checking) type: R reset val: 0 msb: 17 lsb: 17 MIE csr: mie description: > Contains interrupt information address: 0x304 privilege mode: M rv32: field name: msie description: > M-mode software interrupts enable type: WARL reset val: 0 msb: 3 lsb: 3 - field name: mtie description: > M-mode timer interrupt enable type: WARL reset val: 0 msb: lsb: 7 - field name: meie

TESTS INCLUSION

- Tests to be run (Directed/Random) on core should be present in "testlist.yaml" file. Parameters like instruction count & iterations are set in this file.
- Screenshot of "riscv_arithmetic_basic_test" is shown below:

- test: riscv_arithmetic_basic_test description: > Arithmetic instruction test, no load/store/branch instructions gen_opts: > +instr_cnt=2000 +num_of_sub_program=0 +directed_instr_0=riscv_int_numeric_corner_stream,4 +no_fence=1 +no_data_page=1 +no_branch_jump=1 +boot_mode=m +no_csr_instr=1 iterations: 2 gen_test: riscv_instr_base_test rtl test: core base test

TESTS COMPILATION & GENERATION

```
Top Level Modules:
      tb top
TimeScale is 1 ns / 10 ps
VCS Coverage Metrics Release S-2021.09-SP2-1_Full64 Copyright (c) 1991-2021 by Synopsys Inc.
Starting vcs inline pass...
42 modules and θ UDP read.
recompiling package swerv types
recompiling module mem
recompiling module pic ctrl
recompiling module cmp and mux
recompiling module ifu aln ctl
recompiling module ifu compress ctl
recompiling module ifu ifc ctl
recompiling module ifu bp ctl
recompiling module ifu
recompiling module dec dec ctl
recompiling module dec gpr ctl
recompiling module dec tlu ctl
recompiling module dec timer ctl
recompiling module dec trigger
recompiling module dec
recompiling module exu alu ctl
recompiling module exu div ctl
recompiling module exu
recompiling module lsu
recompiling module lsu clkdomain
recompiling module lsu lsc ctl
recompiling module lsu bus intf
recompiling module lsu ecc
recompiling module lsu dccm ctl
recompiling module lsu trigger
recompiling module dbg
recompiling module dmi wrapper
recompiling package pkg
recompiling package tracer pkg
recompiling module tracer
recompiling module tb top
recompiling module rvoclkhdr
recompiling module rybradder
recompiling module rvtwoscomp
recompiling module rvmaskandmatch
recompiling module rvbtb tag hash
recompiling module rvbtb addr hash
recompiling module rvbtb ghr hash
recompiling module rvrangecheck
recompiling module rveven paritygen
recompiling module rvecc encode
recompiling module rvecc decode
All of 42 modules done
make[1]: Entering directory '/home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/integrated cores/SweRV EH1/out/rtl sim/vcs sim
rm -f cuarc*.so csrc*.so pre vcsobj *.so share vcsobj *.so
if [ -x /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/integrated cores/SweRV EH1/out/rtl sim/vcs simv \
]; then chmod a-x /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/integrated cores/SweRV EH1/out/rtl sim/vcs simv; \
g++ -o /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/integrated cores/SweRV EH1/out/rtl sim/vcs simv \
-Wl,--no-as-needed -rdynamic -Wl,-rpath='$ORIGIN'/vcs simv.daidir -Wl,-rpath=./vcs simv.daidir \
-Wl,-rpath=/home/ubuntu/Synopsys installed/vcs/vcs/S-2021.09-SP2-1/linux64/lib -L/home/ubuntu/Synopsys installed/vcs/vcs/S-2021.09-SP2-1/linux64/li
-Wl,-rpath-link=./ -Wl,--no-as-needed objs/amcQw d.o 2903 archive 1.so SIM l.o \
rmapats mop.o rmapats.o rmar.o rmar nd.o rmar llvm 0 1.o rmar llvm 0 0.o
-lvirsim -lerrorinf -lsnpsmalloc -lvfs -lvcsnew -lsimprofile -lreader_common /home/ubuntu/Synopsys_installed/vcs/vcs/S-2021.09-SP2-1/linux64/li
-luclinative /home/ubuntu/Synopsys installed/vcs/vcs/S-2021.09-SP2-1/linux64/lib/vcs tls.o \
-Wl,-whole-archive -lvcsucli -Wl,-no-whole-archive
                                                            ./../vcs simv.daidir/vc hdrs.o \
/home/ubuntu/Synopsys installed/vcs/vcs/S-2021.09-SP2-1/linux64/lib/vcs save restore new.o \
-ldl -lc -lm -lpthread -ldl
/home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/integrated cores/SweRV EH1/out/rtl sim/vcs simv \
up to date
make[1]: Leaving directory '/home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/integrated cores/SweRV EH1/out/rtl sim/vcs simv
CPU time: 11.989 seconds to compile + .359 seconds to elab + .160 seconds to link
```

Verdi KDB elaboration done and the database successfully generated: 0 error(s), 0 warning(s)

COMPILING THE TESTBENCH FRAMEWORK

• Framework Compilation Command:

• "make compile"

Screenshot of *compile_log* is shown in fig:

RISC-V ARITHMETIC BASIC TEST GENERATION

- RISC-V test generation Command:
- "make gen TEST=riscv_arithmetic_basic_test SEED=1"
- Screenshot of test_generation_log is shown in fig:

UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/isa/riscv instr.sv(101) @ 0: reporter [riscv instr] Registering LW UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1_Original_TB For Reference/google_riscv_dv/src/isa/riscv_instr.sv(101) @ 0: reporter [riscv_instr] Registering LBU UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/isa/riscv instr.sv(101) @ 0: reporter [riscv instr] Registering LHU UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/isa/riscv instr.sv(101) @ 0: reporter [riscv instr] Registering SB UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscy dv/src/isa/riscy instr.sv(101) @ 0: reporter [riscy instr] Registering SH UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/isa/riscv instr.sv(101) @ 0: reporter [riscv instr] Registering SW UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/isa/riscv instr.sv(101) @ 0: reporter [riscv instr] Registering SLL UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscy dv/src/isa/riscy instr.sv(101) @ 0: reporter [riscy instr] Registering SLLI UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/isa/riscv instr.sv(101) @ 0: reporter [riscv instr] Registering SRL UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/isa/riscv instr.sv(101) @ 0: reporter [riscv instr] Registering SRLI UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/isa/riscv instr.sv(101) @ 0: reporter [riscv instr] Registering SRA UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/isa/riscv instr.sv(101) @ 0: reporter [riscv instr] Registering SRAI UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/isa/riscv instr.sv(101) @ 0: reporter [riscv instr] Registering ADD UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/isa/riscv instr.sv(101) @ 0: reporter [riscv instr] Registering ADDI UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/isa/riscv instr.sv(101) @ 0: reporter [riscv instr] Registering NOP UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/isa/riscv instr.sv(101) @ 0: reporter [riscv instr] Registering SUB UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/isa/riscv instr.sv(101) @ 0: reporter [riscv instr] Registering LUI UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/isa/riscv instr.sv(101) @ 0: reporter [riscv instr] Registering AUIPC UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/isa/riscv instr.sv(101) @ 0: reporter [riscv instr] Registering XOR UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/isa/riscv instr.sv(101) @ 0: reporter [riscv instr] Registering XORI UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/isa/riscv instr.sv(101) @ 0: reporter [riscv instr] Registering OR UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscy dv/src/isa/riscy instr.sv(101) @ 0: reporter [riscy instr] Registering ORI UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/isa/riscv instr.sv(101) @ 0: reporter [riscv instr] Registering AND UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscy dv/src/isa/riscy instr.sv(101) @ 0: reporter [riscy instr] Registering ANDI UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/isa/riscv instr.sv(101) @ 0: reporter [riscv instr] Registering SLT UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/isa/riscv instr.sv(101) @ 0: reporter [riscv instr] Registering SLTI UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/isa/riscv instr.sv(101) @ 0: reporter [riscv instr] Registering SLTU UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/isa/riscv instr.sv(101) @ 0: reporter [riscv instr] Registering SLTIU UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscy dv/src/isa/riscy instr.sv(101) @ 0: reporter [riscy instr] Registering BEO UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/isa/riscv instr.sv(101) @ 0: reporter [riscv instr] Registering BNE UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/isa/riscv instr.sv(101) @ 0: reporter [riscv instr] Registering BLT UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/isa/riscv instr.sv(101) @ 0: reporter [riscv instr] Registering BGE UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/isa/riscv instr.sv(101) @ 0: reporter [riscv instr] Registering BLTU UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/isa/riscv instr.sv(101) @ 0: reporter [riscv instr] Registering BGEU UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/isa/riscv instr.sv(101) @ 0: reporter [riscv instr] Registering JAL UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/isa/riscv instr.sv(101) @ 0: reporter [riscv instr] Registering JALR UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscy dy/src/isa/riscy instr.sv(101) @ 0: reporter [riscy instr] Registering FENCE UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/isa/riscv instr.sv(101) @ 0: reporter [riscv instr] Registering FENCE I

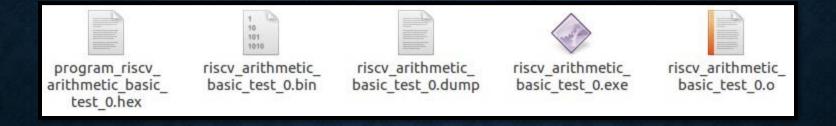
RISCV ARITHMETIC BASIC TESTGENERATION

- RISC-V test generation Command:
- "make gen TEST=riscv_arithmetic_basic_test SEED=1"
- Screenshot of test_generation_log is shown in fig:

```
UVM_INFO /home/ubuntu/SweRV for training/LM_SweRV-EH1 Original_TB_For_Reference/google_riscv_dv/src/riscv_asm_program_gen.sv(1655) @ 0: reporter [asm_gen] Adding directed instruction stream:riscv_int_numeric_corner_stream ratio:4/1006
UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/test/riscv instr base test.sv(92) @ 0: uvm test top [uvm test top] All directed instruction is applied
UVM_INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/riscv asm program gen.sv(825) @ 0: reporter [asm gen] Generating privileged mode routing for MACHINE_MODE
UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/riscv privileged common seq.sv(97) @ 0: reporter@@privil seq [privil seq] mstatus val: 0x1800
UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/riscv asm program gen.sv(1711) @ 0: reporter [asm gen] Insert directed instr stream riscv int numeric corner stream 1/50 times
UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/riscv instr sequence.sv(77) @ 0: reporter@@main [main] Start generating 50 instruction
UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/riscv instr sequence.sv(87) @ 0: reporter@@main [main] Finishing instruction generation
UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/riscv asm program gen.sv(357) @ 0: reporter [asm gen] Randomizing call stack..done
UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/riscv asm program gen.sv(121) @ 0: reporter [asm gen] Generating callstack...done
UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/riscv asm program gen.sv(123) @ 0: reporter [asm gen] Post-processing main program...done
UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/riscv instr sequence.sv(326) @ 0: reporter@@main [main] Injecting 0 illegal instructions, ratio 0/100
UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/riscv instr sequence.sv(339) @ 0: reporter@@main [main] Injecting 0 HINT instructions, ratio 0/100
UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/riscv asm program gen.sv(125) @ 0: reporter [asm gen] Generating main program instruction stream...done
UVM_INFO /home/ubuntu/SweRV_for_training/LM_SweRV-EH1_Original_TB_For_Reference/google_riscv_dv/src/riscv_asm_program_gen.sv(190) @ 0: reporter [asm_gen] Inserting sub-programs...done
UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/riscv asm program gen.sv(191) @ 0: reporter [asm gen] Main/sub program generation...done
UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/src/riscv asm program gen.sv(1572) @ 0: reporter [asm gen] out/seed-1/instr gen/asm tests/riscv arithmetic basic test 0.S is generated
UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/test/riscv instr base test.sv(70) @ 0: uvm test top [] TEST PASSED
UVM INFO /home/ubuntu/SweRV for training/LM SweRV-EH1 Original TB For Reference/google riscv dv/test/riscv instr base test.sv(74) @ 0: uvm test top [] TEST GENERATION DON
UVM INFO /home/ubuntu/Synopsys installed/vcs/vcs/S-2021.09-SP2-1//etc/uvm-1.2/base/uvm report server.svh(904) @ 0: reporter [UVM/REPORT/SERVER]
--- UVM Report Summary ---
** Report counts by severity
UVM INFO : 531
UVM WARNING : 0
UVM ERROR : 0
UVM FATAL : 0
** Report counts by id
     2
[RNTST]
           1
[UVM/RELNOTES]
[asm gen]
           10
[cfg]
       2
[main]
          4
[pmp cfg]
            2
[privil seq]
[riscv instr]
              497
[uvm test top]
                 4
[vector cfg]
               7
$finish called from file "/home/ubuntu/Synopsys installed/vcs/vcs/S-2021.09-SP2-1//etc/uvm-1.2/base/uvm root.svh", line 527.
finish at simulation time
                                             Θ
          VCS Simulation Report
```

RISC-V GENERATED ASSEMBLY TEST

- Generates RISC-V test in the form of assembly code with the file named "riscv_arithmetic_basic_test_0.S".
- Screenshot of generated test file is shown in fig:


```
1.include "user define.h
2#define STDOUT 0xd0580000
3.globl _start
4.section .text
5 start:
6
                      .include "user init.s"
                      csrr x5, 0xf14
7
                     li x6, 0
8
9
                     beq x5, x6, 0f
10
110: la x21, h0 start
12 jalr x0, x21, 0
13 h0 start:
                     li x10, 0x40001104
14
                      csrw 0x301, x10
15
16 kernel sp:
17
                     la x12, kernel stack end
18
19 trap_vec_init:
20
                     la x10, mtvec_handler
21
                      ori x10, x10, 0
22
                      csrw 0x305, x10 # MTVEC
23
24 mepc_setup:
                     la x10, init
25
26
                      csrw 0x341, x10
27
28 custom csr setup:
29
                      nop
30
31 init_machine_mode:
32
                     li x10, 0x1800
33
                      csrw 0x300, x10 # MSTATUS
34
                      li x10, 0x0
35
                      csrw 0x304, x10 # MIE
36
                      mret
37 init:
38
                     li x0, 0xf2a29fc8
39
                     li x1, 0x0
40
                     li x2, 0x0
41
                     li x3, 0xf55ae986
42
                     li x4, 0x8000000
43
                     li x5, 0x6
44
                     li x6, 0x3
45
                     li x7, 0xf4f77d4b
46
                     li x8, 0xb
47
                     li x9, 0x2e3a97b
48
                     li x10, 0x2
49
                     li x11, 0xd3867231
50
                      li x13, 0x304a526d
51
                     li x14, 0xa4a7ca8
52
                     li x15, 0x0
53
                     li x16, 0x0
54
                     li x17, 0x8000000
55
                     li x18, 0x8000000
56
                     li x19. 0x73c42ca1
57
                     li x20, 0x0
                     li x21, 0x8cbc6cda
58
59
                     li x22, 0xc
60
                     li x23, 0x8000000
                     li x24, 0x0
61
62
                     li x25, 0x0
63
                     li x27, 0x0
64
                     li x28, 0x35fbfb61
65
                     li x29, 0xfcf45d11
66
                     li x30, 0x5
67
                     li x31, 0xd
68
                      la x26, user stack end
69 main:
                      or
                                  t4, a5, t3
                                  a3, 15
70
                      c.srai
71
                      slt
                                 tl, zero, t6
72
                      sub
                                  s8, a3, t2
73
                      sub
                                  s1. s8. t4
74
                      c.addi
                                  tp, 31
75
                      slti
                                  sp, t3, -585
76
                                  s3, s4, s1
                      or
77
                      divu
                                 a5, s0, a5
78
                      c.addi4spn s1, sp,
                                          208
```

RISC-V TEST COMPILATION

 To generate executables and hex program file to load in Core RAM, following command is given:

"make gcc_compile TEST=riscv_arithmetic_basic_test SEED=1"

Screenshot of generated files are shown in fig:

RISC-V TEST COMPILATION

 To generate executables and hex program file to load in Core RAM, following command is given:

"make gcc_compile TEST=riscv_arithmetic_basic_test SEED=1"

 Screenshot of generated test dump file is shown in fig:

8000005c <i< td=""><td></td><td></td><td></td></i<>			
8000005c:	f2a2a037	lui	zero,0xf2a2a
8000060:	fc800013	addi	zero, zero, -56
80000064:	4081	c.li	ra,0
8000066:	4101	c.li	sp,0
8000068:	f55af1b7	lui	gp,0xf55af
8000006c:	98618193	addi	gp,gp,-1658
80000070:	80000237	lui	tp,0x80000
80000074:	4299	c.li	t0,6
80000076:	430d	c.li	t1,3
80000078:	f4f783b7	lui	t2,0xf4f78
8000007c:	d4b38393	addi	t2,t2,-693
8000080:	442d	c.li	s0,11
8000082:	02e3b4b7	lui	s1,0x2e3b
8000086:	97b48493	addi	s1,s1,-1669 # 2e3a97b <_start-0x7d1c5685>
8000008a:	4509	c.li	a0,2
800008c:	d38675b7	lui	a1,0xd3867
8000090:	23158593	addi	a1,a1,561
80000094:	304a56b7	lui	a3,0x304a5
80000098:	26d68693	addi	a3,a3,621 # 304a526d <_start-0x4fb5ad93>
8000009c:	0a4a8737	lui	a4,0xa4a8
80000a0:	ca870713	addi	a4,a4,-856
800000a4:	4781	c.li	a5,0
80000a6:	4801	c.li	a6,0
80000a8:	80008b7	lui	a7,0x80000
800000ac:	80000937	lui	s2,0x80000
800000b0:	73c439b7	lui	s3,0x73c43
800000b4:	ca198993	addi	s3,s3,-863 # 73c42ca1 <_start-0xc3bd35f>
80000b8:	4a01	c.li	s4,0
800000ba:	8cbc7ab7	lui	s5,0x8cbc7
800000be:	cdaa8a93	addi	s5,s5,-806 # 8cbc6cda <_end+0xcbbcff2>
800000c2:	4b31	c.li	s6,12
800000c4:	80000bb7	lui	s7,0x80000
800000c8:	4c01		s8,0
800000ca:	4c81	c.li	s9,0
800000cc:	4d81	c.li	s11,0
800000ce:	35fc0e37	lui	t3.0x35fc0
800000d2:	b61e0e13	addi	t3,t3,-1183 # 35fbfb61 <_start-0x4a04049f>
800000d2:	fcf46eb7	lui	t4,0xfcf46
800000da:	d11e8e93	addi	
	4f15		t4,t4,-751 # fcf45d11 <_end+0x7cf3c029>
800000de:		c.li	t5,5
800000e0:	4fb5	c.li	t6,13
800000e2:	00006d17	auipc	s10,0x6
800000e6:	d82d0d13	addi	s10,s10,-638
800000ea <m< td=""><td>ain>:</td><td></td><td></td></m<>	ain>:		
800000ea:	01c7eeb3	or	t4,a5,t3
800000ee:	86bd	c.srai	a3,0xf
800000f0:	01f02333	slt	t1,zero,t6
800000f4:	40768c33	sub	s8,a3,t2
800000f8:	41dc04b3	sub	s1,s8,t4
800000fc:	027d	c.addi	tp,31
800000fe:	db7e2113	slti	sp,t3,-585
80000102:	009a69b3	or	s3, s4, s1
80000106:	02f457b3	divu	a5, s0, a5
8000010a:	0984	c.addi4	
8000010c:	03747a33		s4,s0,s7
80000110:	1a7c8813	addi	a6, s9, 423
80000114:	0729	c.addi	
80000116:	02098133	mul	sp, s3, zero
8000011a:	808d	c.srli	
8000011c:	098bd437		s0,0x98bd
80000120:	034b7b33	remu	s6, s6, s4
80000120:	03564e33	div	t3,a2,s5
80000124:	717d	c.addil	
80000128:	03c1fa33		
8000012a:	fff00993	addi	s4,gp,t3 s3,zero,-1
80000132:	e5d4c3b7	lui	t2,0xe5d4c
80000136:	5cb38393	addi	t2,t2,1483 # e5d4c5cb <_end+0x65d428e3>
8000013a:	fff00c93	addi	s9, zero, -1
8000013e:	fff00f93	addi	t6,zero,-1

RISC-V TEST COMPILATION

• To generate executables and hex program file to load in Core RAM, following command is given:

"make gcc_compile
TEST=riscv_arithmetic_basic_test SEED=1"

 Screenshot of generated program_hex file is shown in fig:

@80000000 F3 22 40 F1 01 43 63 82 62 00 CA 00 67 80 0A 00 37 15 00 40 13 05 10 73 10 45 15 30 17 A6 00 00 13 06 26 CC 17 05 00 00 13 05 65 2D 13 65 05 00 73 10 55 30 17 05 00 25 02 73 10 15 34 01 00 09 65 13 05 80 73 10 05 30 01 45 73 10 45 30 73 00 20 30 37 A2 F2 13 00 80 FC 81 40 01 41 B7 F1 5A F5 93 61 98 02 00 80 99 42 0D 43 B7 83 F7 F4 93 83 B3 D4 37 44 B7 B4 E3 02 93 84 B4 97 09 45 B7 75 86 D3 93 85 15 23 B7 56 4A 30 93 86 D6 26 37 13 07 87 CA 81 47 01 48 B7 08 00 80 37 00 80 **B7** 39 C4 73 93 89 19 CA 01 4A B7 7A BC 8C 93 8A CD 31 4B B7 0B 00 80 01 4C 81 4C 81 4D 37 0E FC 35 13 0E 1E B6 B7 6E F4 FC 93 8E 1E D1 15 4F **B5** 4F 17 6D 00 00 13 0D 2D D8 B3 EE C7 BD 86 33 23 F0 01 33 8C 76 40 B3 04 DC 41 DB B3 69 9A 00 B3 57 F4 02 84 09 33 7A 74 03 88 7C 1A 29 07 33 81 09 02 8D 80 13 37 8B 09 33 7B 4B 03 33 4E 56 03 7D 71 33 FA C1 FF B7 C3 D4 E5 93 83 B3 5C 93 0C F0 FF 93 0F F0 FF 93 06 F0 FF B7 C1 EB CE 93 81 41 13 OE FO FF 01 4A B7 D7 1F 48 93 87 E7 34 03 13 84 CF F5 33 AA D1 02 B3 CF **C9** B3 B7 FF 03 B3 CF 39 03 33 FE FF 02 33 94 F6 B3 C7 36 03 33 64 F4 03 B3 AF F6 03 93 8C 74 25 B3 51 3E 03 B7 57 E4 67 33 F4 C6 B3 FF D1 02 B3 86 39 03 B3 97 FF 03 01 00 33 B3 D6 91 03 B3 87 37 40 B3 DC 77 02 93 09 44 CE B3 B1 F3 03 B3 9F F7 03 33 1E 3E 02 01 00 21 8C 13 E5 04 OC 01 01 00 13 47 DF C7 BA OF 80 16 37 AC C3 98 B3 E7 33 F5 9E 00 13 3E 0B 27 FD 8D 13 1E A0 01 B3 03 F0 40 37 40 70 8A 13 2A 51 FC B3 F9 6F 01 93 37 6B 15 05 67 13 4B 74 22 13 CE A5 C6 B3 19 C6 01

RTL TEST SIMULATION

• To run the generated program in hex file on core, run the following command:

"make rtl_sim
TEST=riscv_arithmetic_basic_test SEED=1"

 Screenshot of generated core_trace log is shown in fig:

24500	Time 0			PC f14022f3	Insn	Decoded instructi x5.mhartid.x0	Lon Register x0:0x00000000	<pre>r and memory contents x5=0x00000000</pre>
24500	6		30000004	4301 c.li	csrrs x6,0	x6=0x00000000	X0:0X00000000	X3=0X0000000
26500	6		30000004	00628263	beq	x5, x6, 8000000a	x5:0x00000000	x6:0x00000000
40500	6		30000000 3000000a	00020203 00000a97	auipc	x21,0x0 x21=0x80		20:020000000
50500	6		3000000a	00ca8a93	addi	x21,x21,12	x21:0x00000000	x21-0x80000016
51500	6		30000012	000a8067	ialr	x0.x21.0	x21:0x00000000	221-020000010
66500	G		B0000012	40001537	lui	x10,0x40001	x10=0x40001000	
67500	G		30000010 3000001a	10450513	addi	x10, x10, 260	x10:0x40001104	x10-0x40001104
76500	G		3000001e	30151073	csrrw	x0,misa,x10	x10:0x00000000	X10-0X40001104
77500	G		80000022	0000a617	auipc	x12,0xa x12=0x80		
78500	G		30000026	cc260613	addi	x12,x12,-830	x12:0x80009ce4	x12=0x80009ce4
78500	G	-	3000002a	00000517	auipc	x10.0x0 x10=0x80		X12-0X0000000000
86500	G		3000002e	2d650513	addi	x10, x10, 726	x10:0x00000000	x10=0x80000300
87500	G		80000032	00056513	ori	x10,x10,0	x10:0x00000000	
88500	G		30000036	30551073	csrrw	x0,mtvec,x10	x10:0x00000000	
94500	G		3000003a	00000517	auipc	x10,0x0 x10=0x80		
96500	G		3000003e	02250513	addi	x10, x10, 34	x10:0x00000000	x10=0x8000005c
97500	G	8	80000042	34151073	csrrw	x0,mepc,x10	x10:0x00000000	
103500	G	8	30000046	0001 c.addi	x0.0	x0:0x00000000		
103500	G	8	30000048	6509 c.lui	x10,0x2	x10=0x00002000		
104500	G	8	3000004a	80050513	addi	x10,x10,-2048	x10:0x00000000	x10=0x00001800
106500	G	8	3000004e	30051073	csrrw	x0,mstatus,x10	x10:0x00000000	
112500	G	8	80000052	4501 c.li	x10,0	x10=0x00000000		
113500	G	8	80000054	30451073	csrrw	x0,mie,x10	x10:0x00000000	
114500	G	8	80000058	30200073	mret			
132500	G	8	8000005c	f2a2a037	lui	x0,0xf2a2a		
142500	G	8	30000060	fc800013	addi	x0,x0,-56	x0:0x00000000	
142500	G	8	30000064	4081 c.li	x1,0	x1=0x00000000		
143500	G	8	80000066	4101 c.li	x2,0	x2=0x00000000		
143500	G	8	80000068	f55af1b7	lui	x3,0xf55af	x3=0xf55af000	
144500	G	8	3000006c	98618193	addi	x3,x3,-1658	x3:0xf55ae986	x3=0xf55ae986
152500	G		80000070	80000237	lui	x4,0x80000	x4=0x80000000	
152500	G		80000074	4299 c.li	x5,6	x5=0x00000006		
153500	G		80000076	430d c.li	x6,3	x6=0x0000003		
153500	G			f4f783b7	lui	x7,0xf4f78	x7=0xf4f78000	
154500	G	-	8000007c	d4b38393	addi	x7,x7,-693	x7:0xf4f77d4b	x7=0xf4f77d4b
162500	G		30000080	442d c.li	x8,11	x8=0x0000000b		
162500	G		80000082	02e3b4b7	lui	x9,0x2e3b	x9=0x02e3b000	
163500	G		30000086	97b48493	addi	x9,x9,-1669	x9:0x00000000	x9=0x02e3a97b
163500	G		3000008a	4509 c.li	x10,2	x10=0x00000002		
164500	G		3000008c	d38675b7	lui	x11,0xd3867	x11=0xd3867000	
172500	G		30000090	23158593	addi	x11,x11,561	x11:0x304a5000	x11≕0xd3867231
172500	G	-	30000094	304a56b7	lui	x13,0x304a5	x13=0x304a5000	
173500	G		30000098	26d68693	addi	x13,x13,621	x13:0x304a526d	x13=0x304a526d
173500	G	8	3000009c	0a4a8737	lui	x14,0xa4a8	x14=0x0a4a8000	

POST COMPARISON STAGE

• To run the same generated program in hex file on spike, run the following command:

"make post_compare TEST=riscv_arithmetic_basic_test SEED=1"

- The command makes .csv files from both core & spike logs, compares them and generate final regression log.
- Screenshot of result of run test on terminal is shown in fig:

Sun, 29 May 2022 23:47:23 INFO Running RTL simulation... Sun, 29 May 2022 23:47:24 INFO Processing regression test list : riscv dv ex tension/testlist.yaml, test: riscv arithmetic basic test Sun, 29 May 2022 23:47:24 INFO Found matched tests: riscv arithmetic basic t est, iterations:1 Comparing spike/DUT sim result : out/seed-1/i Sun, 29 May 2022 23:47:24 INFO nstr gen/asm tests/riscv arithmetic basic test.0.o Sun, 29 May 2022 23:47:24 INFO Processing core log : out/seed-1/rtl sim/risc v arithmetic basic test.0/trace core.log Sun, 29 May 2022 23:47:24 INFO Processed instruction count : 165 CSV saved to : out/seed-1/rtl sim/riscv arith Sun, 29 May 2022 23:47:24 INFO metic basic test.0/trace core 00000000.csv Sun, 29 May 2022 23:47:24 INFO Processing spike log : out/seed-1/instr gen/s pike sim/riscv arithmetic basic test.0.log Sun, 29 May 2022 23:47:24 INFO Processed instruction count : 166 Sun, 29 May 2022 23:47:24 INFO CSV saved to : out/seed-1/instr gen/spike sim /riscv arithmetic basic test.0.csv Sun, 29 May 2022 23:47:24 INFO 1 PASSED, 0 FAILED Sun, 29 May 2022 23:47:24 INFO RTL & ISS regression report at out/seed-1/reg r.log make: warning: Clock skew detected. Your build may be incomplete. ubuntu@ubuntu-virtualbox:~/SweRV for training/LM SweRV-EH1 Original TB For Refer ence/integrated cores/SweRV EH1\$

 To run the same generated program in hex file on spike, run the following command:

"make post_compare TEST=riscv_arithmetic_basic_test SEED=1"

- The command makes .csv files from both core & spike logs, compares them and generate final regression log.
- Screenshot of generated spike_log is shown in fig:

```
1 core
         0: 0x0000000000000000 (0x00000297) auipc
                                                     t0, 0x0
2 core
         0: 3 0x00001000 (0x00000297) x 5 0x00001000
         0: 0x0000000000000004 (0x02028593) addi
3 core
                                                     a1, t0, 32
         0: 3 0x00001004 (0x02028593) x11 0x00001020
4 core
         0: 0x000000000001008 (0xf1402573) csrr
5 core
                                                     a0. mhartid
         0: 3 0x00001008 (0xf1402573) x10 0x00000000
6 core
         0: 0x00000000000100c (0x0182a283) lw
                                                     t0, 24(t0)
7 core
         0: 3 0x0000100c (0x0182a283) x 5 0x80000000 mem 0x00001018
8 core
9 core
         0: 0x000000000001010 (0x00028067) jr
                                                     t0
         0: 3 0x00001010 (0x00028067)
10 core
11 core
         0: 0xfffffff80000000 (0xf14022f3) csrr
                                                     t0, mhartid
12 core
         0: 3 0x80000000 (0xf14022f3) x 5 0x00000000
         0: 0xffffffff80000004 (0x00004301) c.li
13 core
                                                     t1, 0
         0: 3 0x80000004 (0x4301) x 6 0x0000000
14 core
         0: 0xfffffff80000006 (0x00628263) beg
                                                     t0, t1, pc + 4
15 core
16 core
         0: 3 0x80000006 (0x00628263)
         0: 0xffffffff8000000a (0x00000a97) auipc
17 core
                                                    s5, 0x0
         0: 3 0x8000000a (0x00000a97) x21 0x8000000a
18 core
19 core
         0: 0xfffffff8000000e (0x00ca8a93) addi
                                                     s5, s5, 12
20 core
         0: 3 0x8000000e (0x00ca8a93) x21 0x80000016
         0: 0xfffffff80000012 (0x000a8067) jr
21 core
                                                     s5
22 core
         0: 3 0x80000012 (0x000a8067)
23 core
         0: 0xffffffff80000016 (0x40001537) lui
                                                     a0, 0x40001
         0: 3 0x80000016 (0x40001537) x10 0x40001000
24 core
         0: 0xffffffff8000001a (0x10450513) addi
25 core
                                                     a0. a0. 260
         0: 3 0x8000001a (0x10450513) x10 0x40001104
26 core
         0: 0xfffffff8000001e (0x30151073) csrw
27 core
                                                     misa, a6
         0: 3 0x8000001e (0x30151073) c769 misa 0x40141104
28 core
         0: 0xffffffff80000022 (0x0000a617) auipc
29 core
                                                     a2, 0xa
         0: 3 0x80000022 (0x0000a617) x12 0x8000a022
30 core
         0: 0xfffffff80000026 (0xcc260613) addi
31 core
                                                     a2, a2, -830
32 core
         0: 3 0x80000026 (0xcc260613) x12 0x80009ce4
33 core
         0: 0xffffffff8000002a (0x00000517) auipc
                                                     a0. 0x0
         0: 3 0x8000002a (0x00000517) x10 0x8000002a
34 core
35 core
         0: 0xfffffff8000002e (0x2d650513) addi
                                                     a0, a0, 726
         0: 3 0x8000002e (0x2d650513) x10 0x80000300
36 core
         0: 0xfffffff80000032 (0x00056513) ori
37 core
                                                     a0, a0, 0
         0: 3 0x80000032 (0x00056513) x10 0x80000300
38 core
         0: 0xfffffff80000036 (0x30551073) csrw
39 core
                                                     mtvec, a0
40 core
         0: 3 0x80000036 (0x30551073) c773 mtvec 0x80000300
41 core
         0: 0xfffffff8000003a (0x00000517) auipc
                                                     a0, 0x0
42 core
         0: 3 0x8000003a (0x00000517) x10 0x8000003a
43 core
         0: 0xfffffff8000003e (0x02250513) addi
                                                     a0, a0, 34
         0: 3 0x8000003e (0x02250513) x10 0x8000005c
44 core
         0: 0xfffffff80000042 (0x34151073) csrw
45 core
                                                     mepc, a
         0: 3 0x80000042 (0x34151073) c833 mepc 0x8000005c
46 core
         0: 0xfffffff80000046 (0x00000001) c.nop
47 core
48 core
         0: 3 0x80000046 (0x0001)
49 core
         0: 0xfffffff80000048 (0x00006509) c.lui
                                                     a0, 0x2
         0: 3 0x80000048 (0x6509) x10 0x00002000
50 core
51 core
         0: 0xfffffff8000004a (0x80050513) addi
                                                     a0, a0, -2048
52 core
         0: 3 0x8000004a (0x80050513) x10 0x00001800
         0: 0xfffffff8000004e (0x30051073) csrw
53 core
                                                     mstatus, a@
         0: 3 0x8000004e (0x30051073) c768 mstatus
54 core
                                                    0x00001800
         0: 0xffffffff80000052 (0x00004501) c.li
55 core
                                                     a0, 0
56 core
         0: 3 0x80000052 (0x4501) x10 0x0000000
57 core
         0: 0xfffffff80000054 (0x30451073) csrw
                                                     mie, a0
         0: 3 0x80000054 (0x30451073) c772 mie 0x00000000
58 core
         0: 0xfffffff80000058 (0x30200073) mret
59 core
         0: 3 0x80000058 (0x30200073) c768_mstatus 0x00000080
60 core
61 core
        0: >>>> init
62 core
         0: 0x000000008000005c (0xf2a2a037) lui
                                                     zero, 0xf2a2a
         0: 3 0x8000005c (0xf2a2a037)
63 core
64 core
         0: 0xffffffff80000060 (0xfc800013) li
                                                     zero, -56
        0: 3 0x80000060 (0xfc800013)
65 core
```

• To run the same generated program in hex file on spike, run the following command:

"make post_compare TEST=riscv_arithmetic_basic_test SEED=1"

- The command makes .csv files from both core & spike logs, compares them and generate final regression log.
- Screenshot of generated core.csv is shown in fig:

<pre>lpc,instr,gpr,csr,binary,mode,instr str,operand,</pre>	pad
2 80000000, csrrs, t0:00000000, , f14022f3, , "csrrs	x5,mhartid,x0","t0,mhartid,zero",
380000004,c.li,t1:00000000,,4301,,"c.li x6,0","	
4 8000000a, auipc, s5:8000000a,,00000a97,,"auipc	x21,0x0","s5,0x0",
58000000e,addi,s5:80000016,,00ca8a93,,"addi	x21,x21,12","s5,s5,12",
6 80000016,lui,a0:40001000,,40001537,,"lui	x10,0x40001","a0,0x40001",
7 8000001a,addi,a0:40001104,,10450513,,"addi	x10,x10,260","a0,a0,260",
8 80000022, auipc, a2:8000a022,,0000a617,,"auipc	x12,0xa","a2,0xa",
9 80000026,addi,a2:80009ce4,,cc260613,,"addi	x12,x12,-830","a2,a2,-830",
10 8000002a,auipc,a0:8000002a,,00000517,,"auipc	x10,0x0","a0,0x0",
11 8000002e,addi,a0:80000300,,2d650513,,"addi	x10,x10,726","a0,a0,726",
12 80000032,ori,a0:80000300,,00056513,,"ori	x10,x10,0","a0,a0,0",
13 8000003a,auipc,a0:8000003a,,00000517,,"auipc	x10,0x0","a0,0x0",
148000003e,addi,a0:8000005c,,02250513,,"addi	x10,x10,34","a0,a0,34",
1580000048,c.lui,a0:00002000,,6509,,"c.lui	x10,0x2","a0,0x2",
16 8000004a,addi,a0:00001800,,80050513,,"addi	x10,x10,-2048","a0,a0,-2048",
1780000052,c.li,a0:00000000,,4501,,"c.li x10,0",	,"a0,0",
1880000064,c.li,ra:00000000,,4081,,"c.li x1,0","	'ra,0",
198000066,c.li,sp:00000000,,4101,,"c.li x2,0","	'sp,0",
20 80000068,lui,gp:f55af000,,f55af1b7,,"lui	x3,0xf55af","gp,0xf55af",
21 8000006c,addi,gp:f55ae986,,98618193,,"addi	x3,x3,-1658","gp,gp,-1658",
2280000070,lui,tp:80000000,,80000237,,"lui	x4,0x80000","tp,0x80000",
2380000074,c.li,t0:0000006,,4299,,"c.li x5,6","	
2480000076,c.li,t1:00000003,,430d,,"c.li x6,3","	't1,3",
25 80000078,lui,t2:f4f78000,,f4f783b7,,"lui	x7,0xf4f78","t2,0xf4f78",
268000007c,addi,t2:f4f77d4b,,d4b38393,,"addi	x7,x7,-693","t2,t2,-693",
278000080,c.li,s0:000000b,,442d,,"c.li x8,11",	
28 80000082,lui,s1:02e3b000,,02e3b4b7,,"lui	x9,0x2e3b","s1,0x2e3b",
298000086,addi,s1:02e3a97b,,97b48493,,"addi	x9,x9,-1669","s1,s1,-1669",
30800008a,c.li,a0:0000002,,4509,,"c.li x10,2",	
31800008c,lui,a1:d3867000,,d38675b7,,"lui	x11,0xd3867","a1,0xd3867",
32 80000090,addi,al:d3867231,,23158593,,"addi	x11,x11,561","a1,a1,561",
33 80000094,lui,a3:304a5000,,304a56b7,,"lui	x13,0x304a5","a3,0x304a5",
34 80000098,addi,a3:304a526d,,26d68693,,"addi	x13,x13,621","a3,a3,621",
358000009c,lui,a4:0a4a8000,,0a4a8737,,"lui	x14,0xa4a8","a4,0xa4a8",
36 800000a0,addi,a4:0a4a7ca8,,ca870713,,"addi	x14,x14,-856","a4,a4,-856",
37800000a4,c.li,a5:00000000,,4781,,"c.li x15,0",	
38800000a6,c.li,a6:00000000,,4801,,"c.li x16,0",	
39 800000a8,lui,a7:80000000,,800008b7,,"lui	x17,0x80000","a7,0x80000",
4080000ac,lui,s2:80000000,,80000937,,"lui	x18,0x80000","s2,0x80000",
4180000b0,lui,s3:73c43000,,73c439b7,,"lui	x19,0x73c43","s3,0x73c43",
42 800000b4,addi,s3:73c42ca1,,ca198993,,"addi	x19,x19,-863","s3,s3,-863",

- To run the same generated program in hex file on spike, run the following command:
 "make post_compare TEST=riscv_arithmetic_basic_test SEED=1"
- The command makes .csv files from both core & spike logs, compares them and generate final regression log.
- Screenshot of generated regr_log is shown in fig:

sim_riscv_arithmetic_basic_test_0.log × riscv_arithmetic_basic_test_0.S × ris
Test binary: out/seed-1/instr_gen/asm_tests/riscv_arithmetic_basic_test.0.o
spike : out/seed-1/instr_gen/spike_sim/riscv_arithmetic_basic_test.0.csv
core : out/seed-1/rtl_sim/riscv_arithmetic_basic_test.0/trace_core_00000000.csv
[PASSED]: 125 matched

1 PASSED, 0 FAILED

• To run the same generated program in hex file on spike, run the following command:

"make post_compare TEST=riscv_arithmetic_basic_test SEED=1"

- The command makes .csv files from both core & spike logs, compares them and generate final regression log.
- Screenshot of generated regr_log [In case of any mismatches found] is shown in fig:

Open 🔻	+	~/Desktop/dv_e	environment/in	regr.log tegrated_cores/Swe	RV_EH1/out/see	ed-239	Save	¢		+ ×
2 core 3 spike 4 Misma 5 core[3 6 spike] 7 Misma 8 core[4 9 spike] 0 [FAILE	: out/ : out tch[1] 3706] [3706] [3706] tch[2] 4671] [4671]	<pre>/: out/seed /seed-23920 /seed-23920 : : pc[800042 : pc[ffff : : pc[800082</pre>	23920_2/i _2/rtl_sin 0_2/instr_ 2f0] lw ffff800042 788] lw ffff800087	<pre>Instr_gen/asm n/riscv_rand_ gen/spike_si x6,4(x23): 2f0] lw x6,4(x23): 788] lw</pre>	n_tests/ris instr_test m/riscv_ra t1:80002a4 t1, 4(s7): t1:8000859	cv_rand 0/trac and_inst 8 t1:800 08	e_core_ r_test. 00e50	0000	9000.0	SV
13 core : 14 spike	: out/ : out ED]: 9	seed-23920 /seed-23920 71 matched	2/rtl_sim	.nstr_gen/asm n/riscv_rand_ gen/spike_si	instr_test	1/trac	e_core_	0000	9000.0	CSV
				Plain Text 🔻	Tab Width:	4 🕶	Ln 1, Co	ol 1	•	INS

CORE COVERAGE

CORE CODE COVERAGE [HTML]

• To see how much code coverage is achieved by running the following command:

"make cov_urg_all"

Screenshot of html-based code coverage & no. of tests run on core is shown in fig:

SYNOPSYS[°]

Date: Sun May 29 23:55:21 2022 User: ubuntu Version: S-2021.09-SP2-1 Command line: urg -lca -dir out/rtl_sim/test.vdb out/seed-1/rtl_sim/test.vdb Number of tests: 1 Total Coverage Summary SCORE LINE TOGGLE BRANCH 47.94 67.79 30.09 45.94 Hierarchical coverage data for top-level instances SCORE LINE TOGGLE BRANCH NAME 47.94 67.79 30.09 45.94tb top Total Module Definition Coverage Summary SCORE LINE TOGGLE BRANCH 47.23 67.30 29.14 45.26

CORE CODE COVERAGE [HTML]

 To see how much code coverage is achieved by running the riscv_arithmetic_basic_test, run the following cmnd:

"make cov_urg_all"

Screenshot of html-based detailed code_coverage of core is shown in fig:

Synopsys®												
Expand All Collapse All												
NAME	SCORE	LINE	TOGGLE	BRANCH								
⊟ tb_top	47.94	67.79	30.09	45.94								
⊡ rvtop	47.94	67.79	30.09	45.94								
⊡ swerv	47.94	67.79	30.09	45.94								
dbg	20.76	40.95	2.48	18.84								
dec	60.04	69.71	42.10	68.30								
dma_ctrl	43.50	100.00	0.32	30.19								
	76.75	100.00	56.13	74.11								
	54.47	82.12	38.93	42.35								
	36.60	69.37	2.01	38.41								
	23.65	30.00	1.30	39.66								

CORE CODE COVERAGE [DVE]

 To see how much code coverage is achieved by running the following command:

"make cov_all"

 Screenshot of DVE-based detailed code_coverage of core is shown in fig:

<u>File Plan Edit Vie</u>	w <u>S</u> cope	Wine	łow <u>H</u> elp										
🚔 🦛		-	. ^ ^ _ ⊖ ⊕ § >	(🎭 🖬 🖾					(n n)	-	() 1	>	💷 🖂 🗖
	×				- <u>u</u> ,		_		,		_	, _	
* *	 →□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	<u> </u>	MergedTest										
lierarchy 🗸	Type	٠	Name 🗸	Score	e			Line		Toggle	E	branch	
Cosign Hierar	турс	۲	Ė-∎tb_top				47.94%		□ 67.79%			45.94%	
tb_top (tb_top)	Module	8	i - Tytop				47.94%		67.79%			45.94%	
i rvtop (swerv			🗄 🛄 swerv				47.94%		67.79%			45.94%	
iswerv (swe			🔁 🔂 dbg				20.76%		40.95%		18%	18.84%	
	Module		e- 🛄 dec				60.04%		69.71%			68.30%	
🗉 🚺 dec (dec)	Module		e larf e lec_tri				77.82% 5.80%		100.00%		54% 30%		
🗄 🚺 dma_ctrl	Module		⊕ ∎ dec_tr.				5.80% 66.55%		67.12%			74.24%	
🖃 📰 exu (exu)	Module		E- Instbut				48.02%		07.1270	48.			
🕸 🛄 ifu (ifu)	Module		⊕ ∏ tlu				32.32%			13.		50.65%	
🕀 🛄 lsu (lsu)	Module		⊖-∎dma ctrl				43.50%		100.00%		32%	30.19%	
±∎pic_etrl_i	Module		e- 🗍 exu				76.75%		100.00%	56.3	13%	74.11%	
는 <function grou<="" td=""><td></td><td></td><td>🗄 🗐 div_e1</td><td></td><td></td><td></td><td>97.87%</td><td></td><td></td><td>95.3</td><td>73%</td><td>100.00%</td><td></td></function>			🗄 🗐 div_e1				97.87%			95.3	73%	100.00%	
🗀 <module list=""></module>			🕀 🚺 i0_alu	_e1			87.85%		100.00%	63.9	56%	100.00%	
cmp_and_mux			🕂 🔲 i0_alu	_e4			68.15%		100.00%	37.3	79%	66.67%	
configurable_gw			🕀 🚺 i1_alu				84.31%		100.00%			91.67%	
dbg	Module		🕀 🔲 i1_alu				64.38%		100.00%			58.33%	
- 🚺 dec	Module		🗄 🗐 mul_e	1			68.62%			70.5		66.67%	
- 🚺 dec_dec_ctl	Module		e- 🗐 ifu				54.47%		82.12%			42.35%	
· 🚺 dec_decode_ctl	Module		⊕-∎aln				84.49%		100.00%			93.48%	
- 🚺 dec_gpr_ctl	Module		in ∎ bp				44.33% 34.05%		88.73%	9.	71%	34.55%	
dec_ib_ctl	Module		±-∎mem	-4]			51.11%		5 8.70%			53.16%	
dec_timer_ctl	Module		e- I lsu	34			36.60%		69.37%		10%	38.41%	
dec_tlu_ctl	Module		te- tous_in	rf			35.43%		68.16%		59%	37.44%	
dec_trigger	Module		🕀 🚺 clkdor				9.02%)2%		
- 🚺 dma_ctrl	Module		🕀 🚺 deem				17.36%				1%	34.62%	
exu	Module		+ ecc				16.98%				52%	33.33%	
exu_alu_ctl	Module		🕀 🚺 lsu_lsc	_ctl			47.75%		100.00%	5.3	16%	38.10%	
exu_div_ctl	Module		🕀 🚺 stbuf				41.77%		75.00%		32%	50.00%	
exu_mul_ctl	Module		🗄 🔲 trigger				0.87%				37%		
- Tifu	Module		🖻 🔲 pic_etrl_in				23.65%		30.00%		30%	39.66%	
ifu_aln_ctl	Module						25.00%				00%	50.00%	
ifu_bp_ctl	Module						25.00%				00%	50.00%	
ifu compress ctl						_	25.00% 25.00%)0%)0%	50.00%	
ifu_ifc_ctl	Module						25.00%				JU%)0%	50.00%	
ifu_mem_ctl	Module						25.00%				00%	50.00%	
- lsu	Module						25.00%)0%	50.00%	
lsu addrcheck	Module						25.00%)0%	50.00%	
lsu bus buffer	Module						25.00%				00%	50.00%	
lsu_bus_intf	Module		LEVEL				25.00%			0.1	0%	50.00%	
- Isu_clkdomain	Module		- LEVEL	.[3].CO			25.00%			0.1	00%	50.00%	
lsu_cikdomain	Module		🗉 🔲 SETRE				33.33%			16.0	57%	50.00%	
lsu ecc	Module		🕀 🔲 SETRE				33.33%			16.0		50.0ú%	
lsu_ecc	Module		🕀 🔲 SETRE				33.33%			16.0		50.00%	
			🕂 🔲 SETRE				33.33%			16.0		50.00%	
lsu_stbuf	Module		E SETRE				33.33%			16.0		50.00%	
lsu_trigger	Module						33.33%			16.0		50.00%	
pic_ctrl	Module						33.33%			16.0		50.00%	
swerv	Module		🗄 🛄 SETRE	G[8].N			33.33%			16.0	3/%t	50.00%	

CORE FUNCTIONAL COVERAGE

 To see how much code coverage is achieved by running the riscv_arithmetic_basic_test, run the following cmnd:

"make fcov_core TEST=riscv_arithmetic_basic_test SEED=1"

 Screenshot of html-based detailed functional_coverage of core is shown in fig:

riscv_instr_pkg::riscv_instr_cover_group::compressed_opcode_cg	25.00	1	100	1	0	64	64	
riscv_instr_pkg::riscv_instr_cover_group::slt_cg	26.17	1	100	1	0	64	64	
riscv_instr_pkg::riscv_instr_cover_group::sll_cg	26.17	1	100	1	0	64	64	
riscv_instr_pkg::riscv_instr_cover_group::slli_cg	26.25	1	100	1	0	64	64	
riscv_instr_pkg::riscv_instr_cover_group::srli_cg	26.25	1	100	1	0	64	64	
riscv_instr_pkg::riscv_instr_cover_group::c_slli_cg	26.61	1	100	1	0	64	64	
riscv_instr_pkg::riscv_instr_cover_group::c_addi4spn_cg	29.17	1	100	1	0	64	64	
riscv_instr_pkg::riscv_instr_cover_group::and_cg	29.86	1	100	1	0	64	64	
riscv_instr_pkg::riscv_instr_cover_group::sltiu_cg	29.91	1	100	1	0	64	64	
riscv_instr_pkg::riscv_instr_cover_group::c_addi_cg	29.93	1	100	1	0	64	64	
riscv_instr_pkg::riscv_instr_cover_group::c_srai_cg	31.25	1	100	1	0	64	64	
riscv_instr_pkg::riscv_instr_cover_group::c_srli_cg	31.25	1	100	1	0	64	64	
riscv_instr_pkg::riscv_instr_cover_group::mulh_cg	36.33	1	100	1	0	64	64	
riscv_instr_pkg::riscv_instr_cover_group::auipc_cg	37.50	1	100	1	0	64	64	
riscv_instr_pkg::riscv_instr_cover_group::mulhu_cg	39.45	1	100	1	0	64	64	
riscv_instr_pkg::riscv_instr_cover_group::mulhsu_cg	39.84	1	100	1	0	64	64	
riscv_instr_pkg::riscv_instr_cover_group::mul_cg	40.23	1	100	1	0	64	64	
riscv_instr_pkg::riscv_instr_cover_group::or_cg	40.97	1	100	1	0	64	64	
riscv_instr_pkg::riscv_instr_cover_group::slti_cg	41.07	1	100	1	0	64	64	
riscv_instr_pkg::riscv_instr_cover_group::c_addi16sp_cg	41.67	1	100	1	0	64	64	
riscv_instr_pkg::riscv_instr_cover_group::rem_cg	42.59	1	100	1	0	64	64	
riscv_instr_pkg::riscv_instr_cover_group::sub_cg	46.88	1	100	1	0	64	64	
riscv_instr_pkg::riscv_instr_cover_group::ori_cg	51.17	1	100	1	0	64	64	
riscv_instr_pkg::riscv_instr_cover_group::xori_cg	55.47	1	100	1	0	64	64	
riscv_instr_pkg::riscv_instr_cover_group::c_li_cg	56.09	1	100	1	0	64	64	
riscv_instr_pkg::riscv_instr_cover_group::divu_cg	57.99	1	100	1	0	64	64	
riscv_instr_pkg::riscv_instr_cover_group::div_cg	58.80	1	100	1	0	64	64	
riscv_instr_pkg::riscv_instr_cover_group::remu_cg	59.03	1	100	1	0	64	64 64	
riscv_instr_pkg::riscv_instr_cover_group::lui_cg	60.42	1	100	1	0	64	64	
riscv_instr_pkg::riscv_instr_cover_group::addi_cg	82.40	1	100	1	0	64	64	

