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OUTLINE

1. Introduction and Importance of IC Design Verification

2. Lecture

 Functional Verification of DCLS Feature of RISC-V

3. Practical Demonstration

 Simulating the open-source SweRV EH1 core using RISC-V Tool chain + 

Synopsys VCS
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INTRODUCTION AND IMPORTANCE 
OF IC DESIGN VERIFICATION
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WHAT IS DESIGN VERIFICATION?

Design verification is the process used to gain confidence in the 

correctness of a design w.r.t. the requirements & specifications.
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VERIFICATION IN THE IC DESIGN PROCESS

• Functional verification aims to demonstrate that the functional intent of a design is preserved in its 

implementation.
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WHY IS VERIFICATION IMPORTANT?
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COST OF BUGS OVER TIME
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Demo of the Pentium FDIV Bug.mp4


VERIFICATION AT DIFFERENT DESIGN 
LEVELS
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VERIFICATION AT DIFFERENT DESIGN 
LEVELS
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WHY IS VERIFICATION IMPORTANT?

Verification is the single biggest lever to affect the triple constraints:

• Quality

i. A high-quality track record preserves revenue and reputation.

ii. Ideally a team can establish a “right-first-time” track record.

• Cost

i. Fewer revisions through the fabrication/development process means lower costs.

ii. Re-spinning a chip costs hundreds and thousands of dollars.

• Timing/Schedule

i. Fewer revisions through the fabrication/development process means faster time-to-market.

ii. Re-spinning a chips costs 6-8 weeks at least. 13



ROLE OF VERIFICATION IN IC DESIGN

• Engineers need to balance the conflict of interest:

- Tight time-to-market constraints vs. increasing design complexity

• Aim: “Right-first-time” design, “correct-by-construction”

- More and more time-consumed to obtain acceptable level of confidence in correctness of

design!

• Design time << Verification time

- Upto 70% of design effort can go into verification

- Remember: Verification does not create value! But it preserves revenue and reputation!

- In some cases, verification engineers out number designers 2:1
14



DESIGN VERIFICATION TEAM @ NECOP

• Established in 2022

• Functional verification of RTL designs provided by the design teams

10xEngineers
Expertise 

Acquired  IP 
level testing

Provision of IP 
verification 

services

YONGATEK 
Expertise 

Acquired  SoC 
level verification

Establishment of 
SoC verification 

facility
15



DESIGN VERIFICATION TEAM @ NECOP

Team’s 
Skillset

IP Verification

SoC 
Verification

CPU 
Verification
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NECOP DV TEAM WORKING FLOW
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Verification Tools:

1. Synopsys
• SpyGlass

• Verdi Debug

• VCS

• VC Execution Manager

2. Cadence
• Jasper Gold

• Xcelium

• V-Manager

3. Mentor Graphics
• HDL Designer

• QuestaSim



VERIFICATION LANGUAGES

• Programming Languages

• Verilog/System Verilog

• UVM Methodology

• C/C++

• SystemC

• Scripting Languages

• Makefile

• Python

• Bash

• Tcl
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Functional Verification of RISCV based 
Dual-Core Lockstep Feature using Fault 

Injection Mechanism
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Welcome to the 
open era of 
computing.

RISC-V is the free and open 

Instruction Set Architecture… 

… Driven through open 

collaboration

… Enabling freedom of design 

across all domains and 

industries

… Cementing the strategic 

foundation of semiconductors



Disruptive Technology

Barriers Legacy ISA RISC-V ISA

Complexity
1500+ base instructions

Incremental ISA
47 base instructions

Modular ISA

Design freedom $$$ – Limited Free – Unlimited 

License and Royalty fees $$$ Free

Design ecosystem Moderate Growing rapidly. Numerous 
extensions, open and 

proprietary cores

Software ecosystem Extensive Growing rapidly
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Industry innovation on RISC-V

Hardware 
– RV64, multi-heart 

CPUs, vectors, 
bit manipulation, 

hypervisors, debug mode –

AI SoCs
Application 
processors

Software
Linux

Drivers
AI Compilers

Hardware 
– RV32, privilege 

modes, interrupts –

IoT SoCs
Microcontrollers

Software
RTOS

Firmware

Hardware 
– RV32 –

Proof of Concept SoCs
Minion processors for 
power management, 
communications, …

Software
Bare metal software

Hardware
ISA Definition

Test Chips

Software
TestsC

o
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2010 – 2016 2017 – 2018 2019 – 2020 2021
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ISA Discussion
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ISA Discussion
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Classical 5-Stage Pipelining in RISC-V 
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RISC-V Load/Store Architecture
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RISC-V based General Processor
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MOTIVATION OF DCLS CORE

28

• Dual-core lockstep cores are used to

i. Enhance fault tolerance, 

ii. Improve reliability, and 

iii. Meet the stringent safety requirements of critical applications.

• They provide a robust and proven approach to building high-reliability computing systems 

that can withstand hardware faults and environmental challenges. 



SOURCES OF FAILURES

• Radiational Issues in ICs (SEUs)

• Memory: There is an accidental trigger that changes the

memory state in the system. Common scenarios include a

hit by a radiation particle, interference from RF transmitter

• Single Event Latchup (SEL)

• Short-circuits between the power signal and the ground
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WHAT IS DUAL-CORE LOCKSTEP (DCLS)?

• Dual-core lockstep (DCLS) is a redundancy technique for

high-reliability computing used in safety-critical systems like

aerospace, automotive, and industrial control systems.

• Both core’s internal states & outputs are compared at each

clock cycle.

• Any divergence or mismatch between core’s states is

indicated as an error in the system.
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GENERIC DCLS BLOCK DIAGRAM
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CHECKPOINT AND ROLLBACK 
METHODOLOGY

• The checkpoint is an operation that saves a consistent state of the processor in the memory

• The rollback recovers the system from an error by restoring that previous state

• When the Checker detects a mismatch in the CPU’s data output the interrupt is launched to

perform a rollback.
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COMMON MODE 
FAILURES

• DCLS cannot detect potential failures that

can occur at the same point in both cores

since the failures do not cause any difference

between their outputs.

• These failures are referred to as common

mode failures, which cause false match in

the DCLS system.
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TEMPORAL DIVERSITY

• A common approach to this is delaying the

redundant core for few cycles by inserting shift

registers into the inputs.

• With a temporal diversity of even a few cycles, it is

less likely that an erroneous trigger occurs at the

same point of two cores.

• Note that this approach requires resynchronization

of outputs from two cores before comparisons.
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REFERENCE DESIGN

• An Open-Source SweRV-Core with Integrated DCLS

Feature

• RV32-IMF architecture where “I” stands for Integer,

“M” Multiplication & “F” for floating point

• GitHub - chipsalliance/Cores-VeeR-EH1: VeeR EH1

core
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https://github.com/chipsalliance/Cores-VeeR-EH1


DIFFERENT FAULT INJECTION 
(FI) TECHNIQUES

• Hardware and software-based techniques

• This work focus on software-based FI techniques

• Software-based techniques are categorized based on the

time of fault-injection, i.e, compile-time, and run-time

• Code Modification/Insertion

• RTL of design under verification (DUV) is altered during

run-time.
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PROPOSED FI FRAMEWORK 
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FLOW 
DIAGRAM
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Faults Modeling 

The process of describing and characterizing the types, locations, and
behaviors of faults that might arise in SoCs is known as fault modelling.

In the proposed FI framework, faults are modelled using UVM-macros.

The UVM-macros allows backdoor access to DUV internal registers.

Hundred different DCLS internal state signals are accessed in the
fault model, for customizing or flipping their existing stored data.

The UVM macros used for faults modelling are:

(i) uvm-hdl-deposit, 

(ii) uvm-hdl-force,

(iii) uvm-hdl-force-time, 

(iv) uvm-hdl-release and 

(v) uvm-hdl-read.
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USED APPLICATION 
CASES

• The applications used to test DCLS functionality is an open-

source Test-Suite known as “Google RISC-V DV”.

• GitHub - chipsalliance/riscv-dv: Random instruction 

generator for RISC-V processor verification.
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https://github.com/chipsalliance/riscv-dv


Faults Simulation

Application cases in the form of Google RISC-V DV test-

suite are applied to the DUV. 

Faults are induced during each application test case 

simulation. 

Simultaneously, the FI routines are also applied to the 

DUV. 

The resulting fault’s latency, propagation and severity 

levels are then analyzed using simulation waveforms 

data.
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UVM-BASED TESTBENCH 
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RESULTS

• Approximately 20,000 errors are injected by FI campaigns.

• The DCLS feature successfully detects 98.7% of errors from the overall fault injection routines.

• The application cases and their number of detected versus injected faults are shown below
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FUTURE DIRECTIONS

• Add new Fault-Injection scenarios

• Use advanced AI features to model the faults

• Test the enhanced fault-injection framework with 

different cores architectures
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FVDCLS RESEARCH PAPER
Research paper accepted in VLSI-SoC Conference Morocco, 2024
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RISC-V CORE VERIFICATION 
FLOW/DEMO
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INTRODUCTION TO RISC-V ISA

• RISC-V (pronounced "risk-five”): An open-source implementation of a reduced

instruction set computing (RISC) based instruction set architecture (ISA)

• Permitting any person or group to construct compatible computers

• Originated in 2010 by researchers at UC Berkeley

• RISC-V ISA includes: A small base integer ISA, usable by itself as a base for

customized accelerators or for educational purposes, and

Optional standard extensions, to support general-purpose software development

Optional customer extensions 47



INTRODUCTION TO RISC-V ISA

• ISA support is given by RV + word-width + extensions supported permitting any person or 

group to construct compatible computers

 RV32I means 32-bit RISC-V with support for the I(Integer) instruction set

• A mandatory Base integer ISA

I: Integer instructions

• Standard Extensions

M: Integer Multiplication and Division

A: Atomic Instructions

F: Single-Precision Floating-Point

D: Double-Precision Floating-Point

C: Compressed Instructions (16 bit)
48



RV32/64 PROCESSOR 
REGISTER SET

• 32 32/64-bit integer registers (x0-x31)

 x0 always contains a 0

• 32 floating-point (FP) registers (f0-f31)

 Each can contain a single- or double-precision 

FP value (32-bit or 64-bit IEEE FP)

• Program counter (pc) which holds the address of the 

current instruction
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DIFFERENT RISC-V INSTRUCTIONS
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DIFFERENT RISC-V INSTRUCTIONS



RISC-V 
GREEN CARD
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RISC-V 
GREEN CARD
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RISC-V INSTRUCTION FORMATS
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• Specification from RISC-V website

 https://riscv.org/specifications/



DESIGN UNDER VERIFICATION 

• https://github.com/chipsalliance/Cores-SweRV

• The Western Digital SWERV Core EH1 is a 32-bit, dual-issue, 9-stage pipeline core.

• Dual-issue: each clock cycle the processor can move two instructions from one stage of the

pipeline to the next stage.
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https://github.com/chipsalliance/Cores-SweRV


RISC-V PROCESSOR BENCHMARKING

• Benchmarks determine processor performance by running programs that 

exercise the hardware.

• This enables comparison of different processors.
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 4.9 CoreMark/MHz (The CoreMark Score is the number of iterations completed per second)

 2.3 DMIPs/MHz      (It's a measure of how many operations the CPU can perform in a                 

single clock cycle)



MOTIVATION

• Accelerate the verification of RISC-V cores by incorporating open-source verification solutions 

instead of re-inventing the wheel.

57



BUILDING BLOCKS OF CPU VERIFICATION

A CPU level design verification 

environment 

Includes;

 DUT RTL

 Testbench

• Instantiates RTL

• Driver, Monitor and 

Scoreboard

 Tests Generator

 Golden Reference Model

Building all these blocks from scratch 

takes 

a lot of time and resources

Pass/Fail
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OPEN-SOURCE RISC-V ECOSYSTEM

 Google RISC-V DV

• An open-source constraint random instruction

Generator for RISC-V processor verification

• Contains Open-source RISC-V Test-Suite

 RISC-V Toolchain

 Spike ISS

Open-source RISC-V ISA simulator which implements

a functional model of RISC-V Core

 SWERV-EH1

The Western Digital SWERV Core EH-1 is a 32-bit,

dual-issue, 9-stage pipeline core
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SPECIFICATIONS AND SOFTWARE
FROM RISCV.ORG AND GITHUB.COM/RISCV

• Open-Source RISC-V processor verification framework

 https://github.com/Lampro-Mellon/LM-RISCV-DV

RISC-V software includes

 GNU Compiler Collection (GCC) toolchain (with GDB, the debugger)

 https://github.com/riscv/riscv-tools

 A simulator ("Spike")

 https://github.com/riscv/riscv-isa-sim

• A list from

 https://github.com/riscvarchive/riscv-cores-list
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FLOW DIAGRAM
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FLOW DIAGRAM

SweRV Core

Core 

log
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FLOW DIAGRAM WITH COVERAGE
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RISC-V DV REPOSITORY
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FILES FOR INTEGRATION
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POST-COMPARISON STEPS
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POST-COMPARISON STEPS
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INITIAL SETTINGS
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TOOLS SETTINGS

• Add the VCS compiler into the rtl_simulation.yaml file and add the flist there.

• SweRV_flist.f file contains all the files included in the design hierarchy.

• SweRV flist & rtl_simulation.yaml file is shown in fig:
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RISC-V CORE SETTINGS

• Configure the riscv_core_setting.sv file

according to SweRV core parameters

e.g, mode, supported ISA etc.
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STANDARD RISC-V 
SweRV CSRs 

CONFIGURATIONS

• Configure all the SweRV core CSRs with bit

fields in the SweRV_CSR.yaml file.

• Screenshot of the SweRV mstatus & mie CSRs

is shown in fig:
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TESTS INCLUSION

• Tests to be run (Directed/Random) on core should be present in “testlist.yaml” file. Parameters 

like instruction count & iterations are set in this file.

• Screenshot of “riscv_arithmetic_basic_test” is shown below:
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TESTS COMPILATION & 
GENERATION
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COMPILING THE 

TESTBENCH 

FRAMEWORK

• Framework Compilation Command:

• “make compile”

• Screenshot of compile_log is shown in 

fig:
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RISC-V ARITHMETIC BASIC TEST 
GENERATION 

• RISC-V test generation Command:

• “make gen TEST=riscv_arithmetic_basic_test SEED=1”

• Screenshot of test_generation_log is shown in fig:
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RISCV ARITHMETIC BASIC 
TESTGENERATION 

• RISC-V test generation Command:

• “make gen TEST=riscv_arithmetic_basic_test SEED=1”

• Screenshot of test_generation_log is shown in fig:
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RISC-V GENERATED 
ASSEMBLY TEST

• Generates RISC-V test in the form of

assembly code with the file named

“riscv_arithmetic_basic_test_0.S”.

• Screenshot of generated test file is shown in

fig:
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RISC-V TEST COMPILATION

• To generate executables and hex program file to load in Core RAM, following

command is given:

“make gcc_compile TEST=riscv_arithmetic_basic_test SEED=1” 

• Screenshot of generated files are shown in fig:
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RISC-V TEST 
COMPILATION

• To generate executables and hex program file to 

load in Core RAM, following command is given:

“make gcc_compile

TEST=riscv_arithmetic_basic_test SEED=1” 

• Screenshot of generated test dump file is 

shown in fig:
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RISC-V TEST 
COMPILATION

• To generate executables and hex program file to 

load in Core RAM, following command is given:

“make gcc_compile

TEST=riscv_arithmetic_basic_test SEED=1” 

• Screenshot of generated program_hex file is 

shown in fig:
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RTL TEST SIMULATION

• To run the generated program in hex file on

core, run the following command:

“make rtl_sim

TEST=riscv_arithmetic_basic_test SEED=1” 

• Screenshot of generated core_trace log is

shown in fig:
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POST COMPARISON STAGE 84



POST-COMPARISON

• To run the same generated program in hex

file on spike, run the following command:

“make post_compare

TEST=riscv_arithmetic_basic_test

SEED=1” 

• The command makes .csv files from both

core & spike logs, compares them and

generate final regression log.

• Screenshot of result of run test on terminal

is shown in fig:
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POST-COMPARISON

• To run the same generated program in hex file

on spike, run the following command:

“make post_compare

TEST=riscv_arithmetic_basic_test SEED=1” 

• The command makes .csv files from both core &

spike logs, compares them and generate final

regression log.

• Screenshot of generated spike_log is shown in

fig:
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POST-COMPARISON

• To run the same generated program in hex
file on spike, run the following command:

“make post_compare
TEST=riscv_arithmetic_basic_test

SEED=1” 

• The command makes .csv files from both
core & spike logs, compares them and
generate final regression log.

• Screenshot of generated core.csv is shown
in fig:

87



POST-COMPARISON

• To run the same generated program in hex file on spike, run the following command:

“make post_compare TEST=riscv_arithmetic_basic_test SEED=1” 

• The command makes .csv files from both core & spike logs, compares them and generate 

final regression log.

• Screenshot of generated regr_log is shown in fig:
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POST-COMPARISON

• To run the same generated program in 
hex file on spike, run the following 
command:

“make post_compare
TEST=riscv_arithmetic_basic_test

SEED=1” 

• The command makes .csv files from 
both core & spike logs, compares 
them and generate final regression 
log.

• Screenshot of generated regr_log [In 
case of any mismatches found] is 
shown in fig:
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CORE COVERAGE 90



CORE CODE COVERAGE [HTML]

• To see how much code coverage is achieved by running the following command:

“make cov_urg_all”

• Screenshot of html-based code coverage & no. of tests run on core is shown in fig:

91



CORE CODE COVERAGE [HTML]

• To see how much code coverage is achieved by running the riscv_arithmetic_basic_test, run 

the following cmnd:

“make cov_urg_all”

• Screenshot of html-based detailed code_coverage of core is shown in fig:
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CORE CODE 
COVERAGE [DVE]

• To see how much code coverage is 

achieved by running the following 

command:

“make cov_all”

• Screenshot of DVE-based detailed

code_coverage of core is shown in 

fig:
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CORE FUNCTIONAL COVERAGE 

• To see how much code coverage is

achieved by running the

riscv_arithmetic_basic_test, run the

following cmnd:

“make fcov_core

TEST=riscv_arithmetic_basic_test

SEED=1”

• Screenshot of html-based detailed

functional_coverage of core is shown in

fig:
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DEMO
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