
Getting started with
Buildroot : How to build your own
Embedded Linux OS

Abdul Qadeer
Research Assistant

Centre for AI & Big Data
Namal University

Mianwali

Contents
• Introduction to Linux
• Traditional Linux vs Embedded Linux
• Introduction to Buildroot
• Target Processor Architectures
•How Much Powerful Linux It Can Provide?
Buildroot Design Principles
How to create your own embedded Linux OS using Buildroot?

Introduction to Linux

What is Linux?
•Linux is An open-source operating system kernel originally developed by Linus
Torvalds in 1991.
•Powers a wide range of devices, from servers and desktops to embedded systems
and smartphones.
•Various "distributions" like Ubuntu, Fedora, and Debian, each tailored for
different use cases.

 Why Linux?
•Open Source
•Linux can be tailored to a wide range of applications, from lightweight embedded
systems to powerful supercomputers

Embedded Linux vs Traditional Linux

Figure 1: Interface of Builroot

Feature Traditional Linux Embedded OS

Purpose General-purpose, versatile Purpose-built, specialized for
specific tasks

Package Management Includes package managers (e.g.,
apt, yum)

No package manager, software is
static

Development Environment Supports on-target development
with compilers and tools

Cross-compilation, development
done on host system

Hardware Requirements Higher CPU, memory, and storage
requirements

Minimal hardware requirements,
optimized for efficiency

Flexibility Dynamic, can install/run new
software post-deployment

Static, limited or no capability to
add new software

User Interface includes GUIs like GNOME or
KDE

Typically no GUI, may have simple
interfaces

• Buildroot is a simple, efficient and easy-to-use tool to generate embedded
Linux systems through cross-compilation.

• Key Benefits:

 Easy Configuration: Simple menu-based configuration tool.
 Customizable: Adaptable to specific needs and hardware.
 Extensive Support: Large number of pre-configured packages.
 Buildroot supports numerous processors and their variants like

ARM, x86, PowerPC, RISC-V & ARC etc

Introduction to buildroot

Introduction to buildroot

Figure 1: Interface of Builroot

Embedded Linux vs Traditional OS

Figure 1: Interface of Builroot

Feature Traditional Linux Embedded OS

Purpose General-purpose, versatile Purpose-built, specialized for
specific tasks

Package Management Includes package managers (e.g.,
apt, yum)

No package manager, software is
static

Development Environment Supports on-target development
with compilers and tools

Cross-compilation, development
done on host system

Hardware Requirements Higher CPU, memory, and storage
requirements

Minimal hardware requirements,
optimized for efficiency

Flexibility Dynamic, can install/run new
software post-deployment

Static, limited or no capability to
add new software

User Interface includes GUIs like GNOME or
KDE

Typically no GUI, may have simple
interfaces

Steps to create your own embedded Linux OS
Step 1 : Navigate to Buildroot Directory cd buildroot

Step 2 : Open Buildroot Configuration Menu sudo make menuconfig

Step 3 : Set target architecture, select Linux kernel, and use default kernel configuration.

Step 4 : Build the System. sudo make

Step 5 : Navigate to Output Images Directory cd output/images

Step 6 : Copy Kernel Image and Root Filesystem Archive cp -r bzImage rootfs.tar

Step 7 : Navigate to Home Directory cd ~

Step 8 : Create Distribution Directory mkdir distro

Step 9 : Move Files to Distribution Directory mv bzImage rootfs.tar distro/

Step 10 : Navigate to Distribution Directory cd distro

Step 11 : Extract Root Filesystem Archive tar xf rootfs.tar

Step 12 : Remove Root Filesystem Archive rm rootfs.tar

Step 13 : Navigate to Home Directory cd ~

Step 14 : Create Boot Image File truncate -s 100MB boot.img

Step 15 : Create Mount Directory mkdir mounted

Step 16 : Format Boot Image mkfs boot.img

Step 17 : Install extlinux Bootloader sudo apt install extlinux

Step 18 : Mount Boot Image sudo mount boot.img mounted/

Step 19 : Install extlinux on Boot Image sudo extlinux --install mounted

Step 21 : Copy Distribution Files to Boot Image sudo cp -r distro/* mounted

Step 22 : Unmount Boot Image sudo umount mounted

Steps to create your own embedded Linux OS

Adding a New Package: Config.in

Figure 2 : Adding a new package: Config.in

Adding a New Package: <pkg>.mk,
<pkg>.hash

Figure 3 : Adding a new package

How Much Powerful Linux It Can Provide?
 It can provide a embedded linux depending upon the

hardware requirements(32MB to GBs).
 Pre-defined configurations for popular platforms:
▶ RasberryPi
▶ BeagleBone
▶ CubieBoard
▶ PandaBoard
▶ Atmel development boards
▶ Several Freescale i.MX6 boards
▶ Many Qemu configurations

Buildroot Design Principles
 Cross-compilation only: no support for doing development

on the target.
 No package management system: Buildroot doesn’t

generate a distribution, but a firmware
 Don’t be smart: if you do a change in the configuration and

restarts the build, Buildroot doesn’t try to be smart. Only a
full rebuild will guarantee the correct result.

 14

Thank You!

	Getting started with Buildroot : How to build your own Embedded
	Contents
	Introduction to Linux
	Embedded Linux vs Traditional Linux
	Slide 5
	Introduction to buildroot
	Embedded Linux vs Traditional OS
	Steps to create your own embedded Linux OS
	Slide 9
	Adding a New Package: Config.in
	Adding a New Package: <pkg>.mk, <pkg>.hash
	How Much Powerful Linux It Can Provide?
	Buildroot Design Principles
	Slide 14

