Getting started with

Buildroot : How to build your own
Embedded Linux OS

Abdul Qadeer
Research Assistant
Centre for Al & Big Data
Namal University
Mianwali

Contents

* Introduction to Linux
* Traditional Linux vs Embedded Linux
* Introduction to Buildroot

* Target Processor Architectures
*How Much Powerful Linux It Can Provide?
Buildroot Design Principles

How to create your own embedded Linux OS using Buildroot?

Introduction to Linux

What is Linux?

L.inux is An open-source operating system kernel originally developed by Linus
Torvalds in 1991.

*Powers a wide range of devices, from servers and desktops to embedded systems
and smartphones.

*Various "distributions" like Ubuntu, Fedora, and Debian, each tailored for
different use cases.

Why Linux?
*Open Source

*L.inux can be tailored to a wide range of applications, from lightweight embedded
systems to powerful supercomputers

Embedded Linux vs Traditional Linux

Feature

Traditional Linux

Embedded OS

Purpose

General-purpose, versatile

Purpose-built, specialized for
specific tasks

Package Management

Includes package managers (e.g.,
apt, yum)

No package manager, software is
static

Development Environment

Supports on-target development
with compilers and tools

Cross-compilation, development
done on host system

Hardware Requirements

Higher CPU, memory, and storage
requirements

Minimal hardware requirements,
optimized for efficiency

Flexibility

Dynamic, can install/run new
software post-deployment

Static, limited or no capability to
add new software

User Interface

includes GUIs like GNOME or
KDE

Typically no GUI, may have simple
interfaces

Figure 1: Interface of Builroot

Introduction to buildroot

* Buildroot is a simple, efficient and easy-to-use tool to generate embedded
Linux systems through cross-compilation.

* Key Benefits:

;
;
3

Easy Configuration: Simple menu-based configuration tool.
Customizable: Adaptable to specific needs and hardware.
Extensive Support: Large number of pre-configured packages.
Buildroot supports numerous processors and their variants like

ARM, x86, PowerPC, RISC-V & ARC etc

Introduction to buildroot

Buildroot 2015.11-git-00211-g9d912005 Configuration +
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty submenus ----). Highlighted letters are |
hotkeys. Pressing <Y> selectes a feature, while <N> will exclude a feature. Press <Esc><Esc> to exit, <?> for |

Help, </> for Search. Legend: [*] feature 1s selected [] feature i1s excluded

Target options ---

Build options ---=
foolchain --->

system configuration ---=
Kernel --->

Target packages --->
F1lesystem images ---=
Bootloaders --->

Host utilities ---=>

Legacy config options ---=>

< Exit > < Help> < Save > < Load >

Figure 1: Interface of Builroot

Embedded Linux vs Traditional OS

Feature

Traditional Linux

Embedded OS

Purpose

General-purpose, versatile

Purpose-built, specialized for
specific tasks

Package Management

Includes package managers (e.g.,
apt, yum)

No package manager, software is
static

Development Environment

Supports on-target development
with compilers and tools

Cross-compilation, development
done on host system

Hardware Requirements

Higher CPU, memory, and storage
requirements

Minimal hardware requirements,
optimized for efficiency

Flexibility

Dynamic, can install/run new
software post-deployment

Static, limited or no capability to
add new software

User Interface

includes GUIs like GNOME or
KDE

Typically no GUI, may have simple
interfaces

Figure 1: Interface of Builroot

Steps to create your own embedded Linux OS

Step 1 : Navigate to Buildroot Directory cd buildroot

Step 2 : Open Buildroot Configuration Menu sudo make menuconfig

Step 3 : Set target architecture, select Linux kernel, and use default kernel configuration.
Step 4 : Build the System. sudo make

Step 5 : Navigate to Output Images Directory cd output/images

Step 6 : Copy Kernel Image and Root Filesystem Archive cp -r bzImage rootfs.tar

Step 7 : Navigate to Home Directory cd ~

Step 8 : Create Distribution Directory mkdir distro

Step 9 : Move Files to Distribution Directory mv bzImage rootfs.tar distro/

Step 10 : Navigate to Distribution Directory cd distro

Steps to create your own embedded Linux OS

Step 11 : Extract Root Filesystem Archive tar xf rootfs.tar

Step 12 : Remove Root Filesystem Archive rm rootfs.tar

Step 13 : Navigate to Home Directory cd ~

Step 14 : Create Boot Image File truncate -s 100MB boot.img

Step 15 : Create Mount Directory mkdir mounted

Step 16 : Format Boot Image mkfs boot.img

Step 17 : Install extlinux Bootloader sudo apt install extlinux

Step 18 : Mount Boot Image sudo mount boot.img mounted/

Step 19 : Install extlinux on Boot Image sudo extlinux --install mounted
Step 21 : Copy Distribution Files to Boot Image sudo cp -r distro/* mounted

Step 22 : Unmount Boot Image sudo umount mounted

Adding a New Package: Config.in

package/libmicrohttpd/Config.in

config BR2_PACKAGE _LIBMICROHTTPD
bool "libmicrohttpd”
depends on BRZ_TOOLCHAIN_HAS_THREADS
help
GNU libmicrohttpd is a small C library that makes it easy to
run an HTTP server as part of another application.

http://www.gnu.org/software/libmicrohttpd/

comment "libmicrohttpd needs a toolchain w/ threads"
depends on !'BR2Z_TOOLCHAIN_HAS_THREADS

package/Config.in

[...]
source "package/libmicrohttpd/Config.in"

[...]

Figure 2 : Adding a new package: Config.in

Adding a New Package: <pkg>.mk,
<pkg=>.hash

package/libmicrohttpd/libmicrohttpd.mk

LIBMICROHTTPD VERSION = 0.9.59

LIBMICROHTTPD_SITE = $(BR2_GNU_MIRROR)/libmicrohttpd
LIBMICROHTTPD LICENSE = LGPL-2.1+

LIBMICROHTTPD _LICENSE FILES = COPYING

LIBMICROHTTPD _INSTALL_STAGING = YES

LIBMICROHTTPD_CONF_OPT = --disable-curl --disable-examples

$(eval $(autotools-package))

package/libmicrohttpd/libmicrohttpd.hash

Locally calculated
sha256 9b9ccd7d0bl1b0el7... 1libmicrohttpd-0.9.59.tar.gz
sha256 70el12e2a60151b%ed... COPYING

Figure 3 : Adding a new package

How Much Powerful Linux It Can Provide?

* It can provide a embedded linux depending upon the
hardware requirements(32MB to GBs).

* Pre-defined configurations for popular platforms:
» RasberryPi

» BeagleBone

» CubieBoard

» PandaBoard

» Atmel development boards
» Several Freescale i.M X6 boards

» Manv OQemu configurations

Buildroot Design Principles

* Cross-compilation only: no support for doing development
on the target.

°*No package management system: Buildroot doesn’t
generate a distribution, but a firmware

* Don’t be smart: if you do a change in the configuration and
restarts the build, Buildroot doesn’t try to be smart. Only a
full rebuild will guarantee the correct result.

Thank You!

	Getting started with Buildroot : How to build your own Embedded
	Contents
	Introduction to Linux
	Embedded Linux vs Traditional Linux
	Slide 5
	Introduction to buildroot
	Embedded Linux vs Traditional OS
	Steps to create your own embedded Linux OS
	Slide 9
	Adding a New Package: Config.in
	Adding a New Package: <pkg>.mk, <pkg>.hash
	How Much Powerful Linux It Can Provide?
	Buildroot Design Principles
	Slide 14

