
Embedded Systems

Microprocessor Architecture

 CH32V003

Day 5



Contents

• Introduction to GPIOs (General Purpose Input/Output). 

• Configuring GPIO pins as input and output. 

• Basic GPIO operations: reading and writing to GPIO pins.

• Overview of communication protocols (UART, SPI, I2C).

• Analog to Digital Converter (ADC) and Digital to Analog Converter (DAC)

• Understanding the principles and advantages of each protocol. 

• Basic implementation of communication protocols in embedded systems.



Pin Configuration

ADC

5VT

5VT

AETR2 

A3

A4 AETR

A7

VCC

GND

TIM2

SWIO

T2CH2

T2CH1ETR

T2CH4

TIM1

T1ETR

TICH1N

T1CH3N

T1CH1

OPO 

NRST

SCOM

SCK

MOSI 

MISO 

UCTS

UCK

OPP1

ADC

A2

5VT

5VT

A0

A1

A6

A5

VCC

GND

TIM2

MCO

T2CH3 

OPP0 

OPN0 

TIM1

T1CH4

T1CH3

T1BKIN 

TICH2N

T1CH2

SCOM

SCL URTS

SDA NSS

URX

UTX

SW
D

V
C

C

G
N

D



General Purpose Input Output Pins (GPIO)

• A GPIO (general-purpose input/output) port handles both incoming and outgoing digital signals. 

• The GPIO port can be configured for multiple input or output modes, with built-in pull-up or pull-down resistors that can 
be turned off, and can be configured for push-pull or open-drain functions. the GPIO port can also be multiplexed for other 
functions. 

• GPIO as Input: It can be used to communicate to the CPU the ON/OFF signals received from switches, or the digital
readings received from sensors.

• As an Output port: It can be used to drive outside operations based on CPU instructions and calculation results—for
example, to drive an LED display based on calculation results, or to output drive signals to a motor.

• In early MCUs, each port was either exclusively input or exclusively output.

• A GPIO is flexible, however. If it has 8 pins , you can set them as best suits your needs: 

• 4 input and 4 output

• 7 input and 1 output

• any other combination

• Note that while programs read, write, and operate on digital values (0s and 1s), external devices often use signal levels:
LOW voltage and HIGH voltage. The GPIO handles the necessary conversions in both directions. 



GPIO Functions



GPIO General Registers

• Port Direction Register (PDR)
Sets the direction of each GPIO pin; either input or output.

• Port Input Data Register (PIDR)
Shows status of the input pins. For each pin, input of a LOW 
signal sets the corresponding register value to 0; input of a 
HIGH signal sets the value to 1. The CPU reads this register in 
order to learn the most recent signal levels. Values are not 
saved; each time the CPU reads the register, it will reflect the 
current signal states.

• Port Output Data Register (PODR)
To output data through the output pins, the CPU writes the 
output values to the register. A value of 0 is converted into a 
LOW output; 1 is converted into HIGH output. As with regular 
memory, the values written here are retained until 
overwritten. This means that the pin output level will also be 
maintained until the value is changed.



GPIO Main Features in CH32V003

Each pin of the port can be configured to one of the following multiple modes. 

• Floating input

• Pull-up input 

• Dropdown input 

• Analog input 

• Open drain output 

• Push-pull output 

• Multiplexing the inputs and outputs of functions 

Many pins have multiplexing capabilities, and many other peripherals map their output and input channels to these pins. The 
specific usage of these multiplexed pins needs to be referred to the individual peripherals, and the content of whether these 
pins are multiplexed and remapped is explained in this chapter.
GPIO Ports:

There are three port groups available in the MCU, Port A, C and D and in each group, number of pins are there. 

Each Port pin can be configured as GPIO output and can be used in the application.

ll

PORT C

PORT D PORT A



GPIO as Digital Output

Voltage Level = LOW

GPIO Pin_x

Microcontroller

GPIO Input Register
Bit_x = “0”

Voltage Level = HIGH

GPIO Pin_x

Microcontroller

GPIO Input Register
Bit_x = “1”



GPIO as Digital Input

Voltage Level = LOW

GPIO Pin_x

Microcontroller

GPIO Input Register
Bit_x = “0”

Voltage Level = HIGH

GPIO Pin_x

Microcontroller

GPIO Input Register
Bit_x = “0”



GPIO Input/Output Circuit



GPIO Output Circuit

When the IO port is configured to output mode, the pair of MOS in the output driver can be configured to push-pull or open-
drain mode as needed, without using the multiplexing function. The pull-up and pull-down resistors of the input driver are 
disabled, the TTL Schmitt trigger is activated, and the levels appearing on the IO pins will be sampled into the input data 
registers at each AHB clock, so reading the input data registers will give the IO status, and in push-pull output mode, access to 
the output data registers will give the last written value. 



Analog Input Configuration

When the analog input is enabled, the output buffer is disconnected, the input of the Schmitt trigger in the input driver is 
disabled to prevent the generation of consumption on the IO port, the pull-up and pull-down resistors are disabled, and the 
read input data register will always be 0.



GPIO Registers of CH32V003

• Unless otherwise specified, the registers of the GPIO must be operated as words (operate these registers with 32 bits). 

• Each GPIO Port has its own Register-Set which includes these following registers

Register Name Function

Port Configuration Register Configures pin modes and settings.

Port Input Data Register Reads the state of input pins.

Port Output Data Register Sets the state of output pins.

Port Set/Reset Register Allows setting or resetting individual output pins.

Port Reset Register Used to reset configurations or outputs of the port.

Port Configuration Lock Register Controls the locking and unlocking of port configuration 
settings.



Port Configuration Register Low (GPIOx_CFGLR) (x=A/C/D) 

Bits Name Access Description RV

[31:30] 
[27:26] 
[23:22] 
[19:18] 
[15:14] 
[11:10] 
[7:6] 
[3:2] 

CNFy[1:0] RW (y=0-7), the configuration bits for port x, by which the corresponding port is configured. 

When in input mode (MODE=00b). 
▪ 00: Analog input mode. 
▪ 01: Floating input mode. 
▪ 10: With pull-up and pull-down 
        mode. 
▪ 11: Reserved. 

01b 

[29:28] 
[25:24] 
[21:20] 
[17:16] 
[13:12] [9:8] 
[5:4] 
[1:0]

MODEy[1:
0] 

RW (y=0-7), port x mode selection, configure the corresponding port by these bits. 
• 00: Input mode. 
• 01: Output mode, maximum speed 10MHz; 
• 10: Output mode, maximum speed 2MHz. 
• 11: Output mode, maximum speed 50MHz

00b

In output mode (MODE>00b). 
▪ 00: Universal push-pull output mode. 
▪ 01: Universal open-drain output mode. 
▪ 10: Multiplexed function push-pull output 

mode. 
▪ 11: Multiplexing function open-drain 

output mode.



Port Input Register (GPIOx_INDR) (x=A/C/D)

Bits Name Access Description RV

[31:8] Reserved RO - 0b

[7:0] IDRy RO (y=0-7), the port input data. These bits are readonly and can only be read out in 16-bit 
form. The value read is the high and low state of the corresponding bit.

0b

PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7

IDR0
IDR1
IDR2
IDR3
IDR4
IDR5
IDR6
IDR7

LOW
LOW
HIGH
LOW
HIGH
LOW
HIGH
LOW

0
0
1
0
1
0
1
0

Signal  Value PORT-A Register Bit Value

PORT C

P
O

R
T 

D P
O

R
T A



Port Output Register (GPIOx_ODR) (x=A/C/D)

Bits Name Access Description RV

[31:8] Reserved RO - 0b

[7:0] ODRy RW For output modes. (y=0-7), the data output by the port. These data can only be operated 
in 16-bit form. the I/O port outputs the values of these registers externally. For modes 
with drop-down inputs. 
0: Drop-down input. 
1: Pull-up input.

0b

PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7

IDR0
IDR1
IDR2
IDR3
IDR4
IDR5
IDR6
IDR7

LOW
LOW
HIGH
LOW
HIGH
LOW
HIGH
LOW

0
0
1
0
1
0
1
0

Signal  ValuePORT-ARegister BitValue

PORT C

P
O

R
T 

D P
O

R
T A



Port Reset/Set Register (GPIOx_BCR) (x=A/C/D)

Bits Name Access Description RV

[31:24] Reserved RO -

[23:16] BRy RW (y=0-7), the corresponding OUTDR bits are cleared for these location bits, and writing 0 
has no effect. These bits can only be accessed in 16-bit form. If both BR and BS bits are 
set, the BS bit takes effect

0b 

[15:8] Reserved RO -

[7:0] BSy RW (y=0-7), for which the location bits will make the corresponding OUTDR location bits, 
writing 0 has no effect. These bits can only be accessed in 16-bit form. If both BR and BS 
bits are set, the BS bit takes effect.

0b

PORT C

P
O

R
T 

D P
O

R
T A



Port Reset Register (GPIOx_BCR) (x=A/C/D)

Bits Name Access Description RV

[31:8] Reserved RO -

[7:0] BRy RW (y=0-7), the corresponding OUTDR bits are cleared for these location bits, and writing 0 
has no effect. These bits can only be accessed in 16-bit form.

0b 

PORT C

P
O

R
T 

D P
O

R
T A



Port Reset Register (GPIOx_BCR) (x=A/C/D)

Bits Name Access Description RV

[31:8] Reserved RO -

[7:0] BRy RW (y=0-7), the corresponding OUTDR bits are cleared for these location bits, and writing 0 
has no effect. These bits can only be accessed in 16-bit form.

0b 

PORT C

P
O

R
T 

D P
O

R
T A



Port Configuration Lock Register (GPIOx_LCKR) (x=A/C/D)

Bits Name Access Description RV

[31:8] Reserved RO -

8 RW The lock key, which can be written in a specific sequence to achieve locking, but which 
can be read out at any time. It reads 0 to indicate that no locking is in effect, and reads 1 
to indicate that locking is in effect. The write sequence for the lock key is: write 1 - write 
0 - write 1 - read 0 - read 1. The last step is not necessary, but can be used to confirm 
that the lock key is active. Any error while writing the sequence will not enable the 
activation of the lock and the value of LCK[7:0] cannot be changed while the sequence is 
being written. After the lock is in effect, the port configuration can only be changed after 
the next reset.sponding OUTDR bits are cleared for these location bits, and writing 0 has 
no effect. These bits can only be accessed in 16-bit form.

0b 

[7:0] LCKy (y=0-7), these bits are 1 to indicate locking the configuration of the corresponding port. 
These bits can only be changed before the LCKK is unlocked. The locked configuration 
refers to the configuration registers GPIOx_CFGLR and GPIOx_CFGHR.

0b

Note: After the LOCK sequence is executed for the corresponding port bit, the configuration of the port bit will not be changed again until the next system reset. 



Alternate Functions

• In microcontrollers, alternate functions refer to the capability of pins to serve multiple purposes depending on the 
configuration. 

• These functions enable a single physical pin to be used for different roles such as digital input/output, analog input, 
communication interfaces (like UART, SPI, I2C), timers, and more. 

Purpose of Alternate Functions

1 Pin Multiplexing: Microcontrollers often have a limited number of pins. Alternate functions allow these 
pins to be multiplexed to serve various roles, thus maximizing the functionality of the 
microcontroller.

2 Flexibility in Design: Designers can choose which peripheral functions are mapped to which pins, 
providing flexibility in PCB layout and design.

3 Resource Optimization: By allowing pins to be used for different purposes, alternate functions help in 
optimizing the use of available hardware resources.



Alternate Functions

• In microcontrollers, alternate functions refer to the capability of pins to serve multiple purposes depending on the 
configuration. 

• These functions enable a single physical pin to be used for different roles such as digital input/output, analog input, 
communication interfaces (like UART, SPI, I2C), timers, and more. 

Purpose of Alternate Functions

Common Alternate Functions

1 Pin Multiplexing: Microcontrollers often have a limited number of pins. Alternate functions allow these 
pins to be multiplexed to serve various roles, thus maximizing the functionality of the 
microcontroller.

2 Flexibility in Design: Designers can choose which peripheral functions are mapped to which pins, 
providing flexibility in PCB layout and design.

3 Resource Optimization: By allowing pins to be used for different purposes, alternate functions help in 
optimizing the use of available hardware resources.

GPIO Timers and Counters Analog Functions Communication



GPIO as Digital Output

Voltage Level = LOW

GPIO Pin_x

Microcontroller

GPIO Input Register
Bit_x = “0”

Voltage Level = HIGH

GPIO Pin_x

Microcontroller

GPIO Input Register
Bit_x = “1”



Setting GPIOs as Output: Steps 

GPIO Initialization Steps

1. For any configuration, clock for that GPIO port needs to be enabled first.

2. After reset GPIOs are they run in their initial states and most of them run in floating states. 

3. Initialize the GPIOs according to the desired functionality. 

4. Define these parameters for initializing the GPIO pin that will be described in the below example.

Three Parameters are there for any GPIO when configuring as output

Parameters Descrption

1 GPIO_Pin: this is to define which Pin, for example for D0 it will be GPIO_Pin_0

2 GPIO_Mode: to configure if the output will be an open drain (GPIO_Mode_Out_OD) or push-pull 
(GPIO_Mode_Out_PP).

3 GPIO_Speed: to configure how fast you want control the GPIO. There are three options: 
GPIO_Speed_10MHz, 
GPIO_Speed_2MHz, 
GPIO_Speed_50MHz. 
This basically configures the drive strength of the GPIO internally.



Setting GPIOs as Output: Steps 

It is recommended to read the datasheet and go through the electrical characteristics section to know more about
capabilityand limitation of GPIO port/pins. Like output current sourcing and sinking capability, etc.

Please note PD7 is by default is configured as MCU reset pin, you need to configure it as GPIO by configuring it with WCH Link
Programmer Utility or in the code.



Setting GPIOs as Output: Example Code 

GPIO as Output Example Code for CH32V003:

Single GPIO Pin

1. void GPIO_Config (void) 

2. {

3. GPIO_InitTypeDef GPIO_InitStructure = {0}; //structure variable used for the GPIO 

Configuration

4. RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD, ENABLE); // to Enable the clock for Port D

5. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; // Defines which Pin to configure 

6. GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; // Defines Output Type 

7. GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; // Defines speed 

8. GPIO_Init(GPIOD, &GPIO_InitStructure);

9. }

GPIO PIN:        PD0
GPIO MODE:  Output
GPIO Speed:   50 MHz



Setting GPIOs as Output: Example Code 

GPIO as Output Example Code for CH32V003:

Single GPIO Pin

If multiple pins of same port need to be configured with similar settings, you can write as shown below (GPIO D0 and D1):

1. void GPIO_Config(void) 

2. {

3. GPIO_InitTypeDef GPIO_InitStructure = {0}; //structure variable used for the GPIO 

configuration 

4. RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD, ENABLE); // to Enable the clock for Port D 

5. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_PIn_2; // Defines which Pin to configure 

6. GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; // Defines Output Type 

7. GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; // Defines speed 

8. GPIO_Init(GPIOD, &GPIO_InitStructure); }

GPIO PIN:        PD0,PD2
GPIO MODE:  Output
GPIO Speed:   50 MHz



Setting GPIOs as Output: Example Code 

But, if you have different settings for different GPIOs of same port you can do like this (GPIO D0 and D7):

1. void GPIO_Config(void) 

2. {

3. GPIO_InitTypeDef GPIO_InitStructure = {0}; //structure variable used for the GPIO 

configuration 

4. RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD, ENABLE); // to Enable the clock for Port D 

5. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; // Defines which Pin to configure

6. GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; // Defines Output Type 

7. GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; // Defines speed 

8.

9. GPIO_Init(GPIOD, &GPIO_InitStructure); 

10.GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1; // Defines which Pin to configure 

11.GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD; // Defines Output Type 

12.GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz; // Defines speed 

13.

14.GPIO_Init(GPIOD, &GPIO_InitStructure);

15.} 

GPIO PIN:        PD0
GPIO MODE:  Output
GPIO Speed:   50 MHz

GPIO PIN:        PD7
GPIO MODE:  Output
GPIO Speed:   2 MHz



Setting GPIOs as Output: Example Code 

And, now suppose if you want to configure different configuration of same ports, you can write code like this: (GPIO D4 and C7).

1. void GPIO_Config(void) 

2. {

3. GPIO_InitTypeDef GPIO_InitStructure = {0}; //structure variable used for the GPIO 

configuration 

4. RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD, ENABLE); // to Enable the clock for Port D 

5. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4; // Defines which Pin to configure

6. GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; // Defines Output Type 

7. GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; // Defines speed 

8.

9. GPIO_Init(GPIODC &GPIO_InitStructure); 

10.GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7; // Defines which Pin to configure 

11.GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD; // Defines Output Type 

12.GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz; // Defines speed 

13.

14.GPIO_Init(GPIOC, &GPIO_InitStructure);

15.} 

GPIO PIN:        PC7
GPIO MODE:  Output
GPIO Speed:   2 MHz

GPIO PIN:        PD4
GPIO MODE:  Output
GPIO Speed:   50 MHz



Setting GPIOs as Output: Functions

let us see which all functions are available for controlling the GPIO pins or port.

If you go through ch32v00x_gpio.h header file, you can see there following function which you will be using for GPIO output
operations

Functions

1. void GPIO_SetBits(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin);

2. void GPIO_ResetBits(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin);

3. void GPIO_WriteBit(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin, BitAction BitVal);

4. void GPIO_Write(GPIO_TypeDef *GPIOx, uint16_t PortVal);

5. void GPIO_PinLockConfig(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin);



Setting GPIOs as Output: GPIO Toggle

1. #include "debug.h"

2.

3. /*********************************************************************

4. * @fn GPIO_Toggle_INIT

5. * @brief Initializes GPIOA.0

6. * @return none

7. */

8. void GPIO_Toggle_INIT(void)

9. {

10. GPIO_InitTypeDef GPIO_InitStructure = {0};

11.

12. RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD, ENABLE);

13. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;

14. GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;

15. GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

16. GPIO_Init(GPIOD, &GPIO_InitStructure);

17.}

19./*********************************************************************

20. * @fn main

21. * @brief Main program.

22. * @return none

23. */



Setting GPIOs as Output: GPIO Toggle

19.int main(void)

20.{

21. u8 i = 0;

22.

23. NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1);

24. SystemCoreClockUpdate();

25. Delay_Init();

26.#if (SDI_PRINT == SDI_PR_OPEN)

27. SDI_Printf_Enable();

28.#else

29. USART_Printf_Init(115200);

30.#endif

31. printf("SystemClk:%d\r\n", SystemCoreClock);

32. printf( "ChipID:%08x\r\n", DBGMCU_GetCHIPID() );

33. printf("GPIO Toggle TEST\r\n");

34.    

35. GPIO_Toggle_INIT();

36.

37. while(1)

38. {

39. Delay_Ms(250); //SET THE DELAY VALUE HERE

40. GPIO_WriteBit(GPIOD, GPIO_Pin_0, (i == 0) ? (i = Bit_SET) : (i = Bit_RESET));

41. }

42.}



Setting GPIOs as Output: GPIO Toggle

Run



GPIO as Digital Input

Voltage Level = LOW

GPIO Pin_x

Microcontroller

GPIO Input Register
Bit_x = “0”

Voltage Level = HIGH

GPIO Pin_x

Microcontroller

GPIO Input Register
Bit_x = “0”



GPIO Input Circuit

When the IO port is configured in input mode, the output driver is disconnected, the input pull-up and pulldown are 
selectable, and no multiplexed functions or analog inputs are connected. The data on each IO port is sampled into the input 
data register at each AHB clock, and the level status of the corresponding pin is obtained by reading the corresponding bit of 
the input data register.



GPIO Input Polling vs Interrupt 

GPIO Initialization Steps

1. For any configuration, clock for that GPIO port needs to be enabled first.

2. After reset GPIOs are they run in their initial states and most of them run in floating states. 

3. Initialize the GPIOs according to the desired functionality. 

4. Define these parameters for initializing the GPIO pin that will be described in the below example.

Three Parameters are there for any GPIO when configuring as output

Parameters Descrption

1 GPIO_Pin: This is to define which Pin, for example for D0 it will be GPIO_Pin_0

2 GPIO_Mode: To configure if the Input will be with internal pull-up resistance(GPIO_Mode_IPU)

3 GPIO_Speed: to configure how fast you want control the GPIO. There are three options: 
GPIO_Speed_10MHz, 
GPIO_Speed_2MHz, 
GPIO_Speed_50MHz. 
This basically configures the drive strength of the GPIO internally.



Setting GPIOs as Digital Input: Steps 

GPIO Initialization Steps

1. For any configuration, clock for that GPIO port needs to be enabled first.

2. After reset GPIOs are they run in their initial states and most of them run in floating states. 

3. Initialize the GPIOs according to the desired functionality. 

4. Define these parameters for initializing the GPIO pin that will be described in the below example.

Three Parameters are there for any GPIO when configuring as output

Parameters Descrption

1 GPIO_Pin: This is to define which Pin, for example for D0 it will be GPIO_Pin_0

2 GPIO_Mode: To configure if the Input will be with internal pull-up resistance(GPIO_Mode_IPU)

3 GPIO_Speed: to configure how fast you want control the GPIO. There are three options: 
GPIO_Speed_10MHz, 
GPIO_Speed_2MHz, 
GPIO_Speed_50MHz. 
This basically configures the drive strength of the GPIO internally.



Setting GPIOs as Input Polling: Example Code 

GPIO as Input Polling: Example Code for CH32V003:

Single GPIO Pin

GPIO PIN:        PD0
GPIO MODE:   Input
GPIO Speed:   50 MHz



Analog to Digital Converter

Resolution Min Voltage increment

8-bit 3.92 mV

10-bit 0.98 mV

12-bit 0.244 mV

14-bit 61 µV

16-bit 15 µV

• For an ADC input is analog signal and output is digital value 
correspond to analog signal. 

• To convert analog signal to digital ADC took help of reference 
voltage i.e. some known voltage against which ADCs internal 
circuitry can compare input signal to calculate output digital 
value.

• Clock is required for sampling of input data.
• Star of conversion is either hardware based or software based 

to star 
• ADC and there will be end of conversion signal flag or interrupt.



Some Critical Parameters in Analog to Digital Conversion

Sampling Rate of ADC

• Definition: The sampling rate (or sampling frequency) is the number of times per second that the ADC samples the analog 
signal. It's typically measured in Hertz (Hz).

• Impact: A higher sampling rate means that the ADC takes more samples per second, which generally results in a more 
accurate signal.

Resolution

• Definition: Resolution refers to the number of bits used to represent each sampled value. It's usually expressed in bits
(e.g., 8-bit, 12-bit, 16-bit). 

• Impact: Higher resolution allows the ADC to represent the analog signal with finer granularity. 

For example, a 12-bit ADC can distinguish 2^12 (4096) different levels, whereas an 8-bit ADC can only distinguish 2^8 (256)
levels. Higher resolution provides more precise digital representations of the analog input but does not directly affect the
temporal accuracy of the sampling.



Resolution vs Sampling Time



Types of ADCs

1) Flash ADC

• Operation: Uses a parallel array of comparators, each comparing the 
input signal to a unique reference voltage. All comparisons are done 
simultaneously, and the outputs are combined to form a digital code.

• Advantages: Extremely fast conversion time since it performs the 
conversion in a single step; ideal for high-speed applications.

• Typical Uses: Digital oscilloscopes, high-speed data acquisition, radar 
systems.

2) Successive Approximation Register (SAR) ADC

• Operation: Uses a binary search algorithm to convert the input 
voltage into a digital value. The ADC compares the input voltage to a 
reference voltage in a series of steps, narrowing down the range to 
determine the closest digital value.

• Advantages: Balances speed and resolution; relatively simple and 
cost-effective.

• Typical Uses: General-purpose applications, industrial measurement, 
data acquisition.



Types of ADCs

Delta-Sigma (ΔΣ) ADC

• Operation: Oversamples the input signal at a much higher rate than the Nyquist frequency, then uses digital filtering and 
decimation to achieve high resolution. This process modulates the input signal into a higher frequency and filters it to 
produce a high-resolution output.

• Advantages: High resolution and accuracy; excellent noise performance; good for low-frequency signals.

• Typical Uses: Audio processing, precision measurement applications, low-frequency signal acquisition.



Main Features of ADC  in CH32V003

▪ 10-bit resolution 

▪ Supports 8 external channels and 2 internal signal sources for sampling 

▪ Multiple sampling conversion methods for multiple channels: 

➢ Single Mode

➢ Continuous Mod

➢ Scan Mode

➢ Trigger Mode

➢ Intermittent Mode

▪ Data alignment modes: left-aligned, right-aligned 

▪ Sampling time can be programmed separately by channel 

▪ Both rule conversion and injection conversion support external triggering 

▪ Analog watchdog to monitor channel voltage, self-calibration function

▪ ADC channel input range: 0 ≤ VIN ≤ VDDA 

▪ Trigger delay

ADC

AETR2 

A3

A4 AETR

A7

ADC

A2

A0

A1

A6

A5

Default Pin Mapping of ADC





ADC Configuration Flow

1. Module Power up:

2. Sampling Clock

3. Data alignment 

4. Channel configuration

5. Calibration 

6. Programmable sampling time

7. Read ADC 

➢ Regular Group Conversion

➢ Injected Group Conversion


	Slide 1
	Slide 2: Contents
	Slide 3: Pin Configuration
	Slide 4: General Purpose Input Output Pins (GPIO)
	Slide 5: GPIO  Functions
	Slide 6: GPIO General Registers
	Slide 7: GPIO Main Features in CH32V003
	Slide 8: GPIO as Digital Output
	Slide 9: GPIO as Digital Input
	Slide 10: GPIO Input/Output Circuit
	Slide 11: GPIO Output Circuit
	Slide 12: Analog Input Configuration
	Slide 13: GPIO Registers of CH32V003
	Slide 14: Port Configuration Register Low (GPIOx_CFGLR) (x=A/C/D) 
	Slide 15: Port Input Register (GPIOx_INDR) (x=A/C/D)
	Slide 16: Port Output Register (GPIOx_ODR) (x=A/C/D)
	Slide 17: Port Reset/Set Register (GPIOx_BCR) (x=A/C/D)
	Slide 18: Port Reset Register (GPIOx_BCR) (x=A/C/D)
	Slide 19: Port Reset Register (GPIOx_BCR) (x=A/C/D)
	Slide 20: Port Configuration Lock Register (GPIOx_LCKR) (x=A/C/D)
	Slide 21: Alternate Functions
	Slide 22: Alternate Functions
	Slide 23: GPIO as Digital Output
	Slide 24: Setting GPIOs as Output: Steps 
	Slide 25: Setting GPIOs as Output: Steps 
	Slide 26: Setting GPIOs as Output: Example Code 
	Slide 27: Setting GPIOs as Output: Example Code 
	Slide 28: Setting GPIOs as Output: Example Code 
	Slide 29: Setting GPIOs as Output: Example Code 
	Slide 30: Setting GPIOs as Output: Functions
	Slide 31: Setting GPIOs as Output: GPIO Toggle
	Slide 32: Setting GPIOs as Output: GPIO Toggle
	Slide 33: Setting GPIOs as Output: GPIO Toggle
	Slide 34: GPIO as Digital Input
	Slide 35: GPIO Input Circuit
	Slide 36: GPIO Input Polling vs Interrupt 
	Slide 37: Setting GPIOs as Digital Input: Steps 
	Slide 38: Setting GPIOs as Input Polling: Example Code 
	Slide 39: Analog to Digital Converter
	Slide 40: Some Critical Parameters in Analog to Digital Conversion
	Slide 41: Resolution vs Sampling Time
	Slide 42: Types of ADCs
	Slide 43: Types of ADCs
	Slide 44: Main Features of ADC  in CH32V003
	Slide 45
	Slide 46: ADC Configuration Flow

