
Embedded Systems

Microprocessor Architecture

 CH32V003

Day 4

Program Flow

Contents

• Low Cost Microcontroller Architecture

• Introduction to CH32 Family of Microcontrollers

• Detailed study of the CH32V003 Controller

• Applications and Use Cases for CH32V003

• Debugging Tools and Techniques

• Introduction to System Clock

• Header File Explained

Contents

• Low Cost Microcontroller Architecture

• Introduction to CH32 Family of Microcontrollers

• Detailed study of the CH32V003 Controller

• Applications and Use Cases for CH32V003

• Debugging Tools and Techniques

• Introduction to System Clock

• Header File Explained

Characteristics of Low-Cost Microcontrollers

Cost

• Definition of "Low-Cost"

• Typically refers to microcontrollers priced under $5.

• Typical Price Range

• Entry-Level: $1 to $3

• Mid-Range: $3 to $5

Features

• Basic Processing Power

• Simple core with limited computational capabilities.

• Low clock speeds, typically from a few MHz to 100 MHz.

• Integrated Peripherals

• Basic set of peripherals such as GPIO, timers, and communication interfaces.

• Limited Memory and Storage

• Flash memory: 1 KB to 64 KB.

• RAM: 128 B to 8 KB.

Characteristics of Low-Cost Microcontrollers

Trade-offs

• Performance vs. Cost

• Lower cost often means reduced processing power and fewer features.

• Power Consumption

• Generally designed for low-power applications, often with power-saving modes.

• Functionality

• Limited compared to higher-end microcontrollers; often lacks advanced features such as high-
speed communication interfaces or complex timers.

Popular Low-Cost Microcontroller Families

Microcontroller

Family

Typical Price

Range
Key Features Common Applications

Microchip PIC $1 - $3 8-bit/16-bit, basic

peripherals

Simple control systems,

educational projects

Atmel AVR (e.g.,

ATtiny)

$1 - $3 8-bit, rich set of peripherals Hobbyist projects,

educational kits

STMicroelectronics

STM32

$3 - $5 32-bit, various performance

levels

Embedded applications,

consumer electronics

NXP/Freescale Kinetis $3 - $5 32-bit, balance of

performance and cost

Embedded systems,

automotive applications

05

02 03 04

06 07 08

Domestic

Appliances

Audio/Video

Equipment

Gamming

Telecommunication Medical Devices Cars And Vehicles Sensor Integration

Manufacturing

Equipment

01

Applications of Low-Cost Embedded Systems

Basic Features in Low-Cost Microcontroller

1. Basic Processing Power

o Microcontrollers: Often use simple, cost-effective microcontrollers with lower clock speeds and fewer
cores.

o Limited Performance: May have modest processing power suitable for basic tasks and control
functions.

2. Minimal Memory

o Limited RAM: Typically equipped with a small amount of RAM to reduce costs.

o Flash Storage: Often use integrated flash memory for program storage, with limited capacity.

3. Basic I/O Interfaces

o Digital I/O: Basic input and output capabilities for interacting with peripherals.

o Analog I/O: Basic analog-to-digital converters (ADCs) for reading sensor data, if required.

o Serial Communication: Commonly include UART, SPI, or I²C interfaces for communication with other
devices.

4. Low-Power Operation

o Energy Efficiency: Designed to operate with minimal power consumption, often including sleep modes
to extend battery life.

Basic Features in Low-Cost Microcontroller

5. Simple Peripherals

o Basic Sensors and Actuators: Support for a limited number of standard sensors (e.g., temperature,
humidity) and actuators (e.g., LEDs, motors).

o Limited Connectivity: May not include advanced connectivity options like Wi-Fi or Bluetooth, focusing
instead on basic wired or wireless communication.

6. Cost-Effective Development Tools

o Open-Source IDEs: Use of free or low-cost integrated development environments (IDEs) and
toolchains.

o Community Support: Often benefit from strong community support and open-source libraries for
development.

7. Basic Operating Systems

o RTOS: May use a simple real-time operating system (RTOS) if an OS is required, but many operate
without a full-fledged OS.

o Bare Metal: Some systems run directly on hardware without any operating system, reducing overhead
and cost.

Basic Hardware
in Low-Cost

Microcontroller

Contents

• Low Cost Microcontroller Architecture

• Introduction to CH32 Family of Microcontrollers

• Detailed study of the CH32V003 Controller

• Applications and Use Cases for CH32V003

• Debugging Tools and Techniques

• Introduction to System Clock

• Header File Explained

Introduction to CH32 Family of Microcontrollers

• CH32V003 series are industrial-grade general-purpose microcontrollers designed based on 32-bit
RISC-V instruction set and architecture.

• It adopts QingKe V2A core, RV32EC instruction set, and supports 2 levels of interrupt nesting.

• The series are mounted with rich peripheral interfaces and function modules.

• Its internal organizational structure meets the low-cost and low-power embedded application
scenarios.

Introduction to CH32 Family of Microcontrollers

System Architecture: CH32V003

• The CH32V003 series is designed based on the RISC-V instruction set, and its architecture
interacts the core, arbitration unit, DMA module, SRAM storage and other parts through multiple
buses.

• The design integrates a general-purpose DMA controller to reduce the CPU load and improve
access efficiency, as well as data protection mechanisms, automatic clock switching protection
mechanisms and other measures to increase system stability

• Clock tree hierarchy management to optimize power consumption of peripherals.

• Data protection mechanisms and clock security systems for enhanced stability.

Bus Architecture

Bus Type Connection Function

Instruction Bus (I-Code) Core to FLASH instruction interface. Handles instruction prefetching and

loading.

Data Bus (D-Code) Core to FLASH data interface. Manages constant data loading and

debugging.

System Bus Connects the core to the bus matrix. Coordinates access to core, DMA,

SRAM, and peripherals

DMA Bus Links to the bus matrix. Handles DMA operations through

AHB master interface.

Bus Matrix Coordinates access between system

bus, data bus,

Handles DMA operations through

AHB master interface.

Memory Architecture

• The CH32V003 family contains program memory, data memory, core registers, peripheral
registers, and more, all addressed in a 4GB(2^32) linear space.

• System storage stores data in small-end format, i.e., low bytes are stored at the low address and
high bytes are stored at the high address.

Memory Allocation

• Built-in 2KB SRAM, starting address 0x20000000, supports byte, half-word (2 bytes), and full-
word (4 bytes) access.

• Built-in 16KB program Flash memory (Code Flash) for storing user applications.

• Built-in 1920B System memory (bootloader) for storing the system bootloader (factory-cured
bootloader).

• Built-in 64B space for vendor configuration word storage, factory-cured and unmodifiable by
users. Built-in 64B space for user-option bytes storage.

Contents

• Low Cost Microcontroller Architecture

• Introduction to CH32 Family of Microcontrollers

• Detailed study of the CH32V003 Controller

• Applications and Use Cases for CH32V003

• Debugging Tools and Techniques

• Introduction to System Clock

• Header File Explained

Detailed study of the CH32V003 Controller

• Main Features

• QingKe 32-bit RISC-V2A processor, supporting 2 levels of interrupt nesting

• Maximum 48MHz system main frequency 2KB SRAM,

• 16KB Flash Power supply voltage: 3.3/5V

• Multiple low-power modes: Sleep, Standby

• Power on/off reset, programmable voltage detector

• 1 group of 1-channel general-purpose DMA controller

• 1 group of op-amp comparator

• 1 group of 10-bit ADC

• 1×16-bit advanced-control timer, 1×16-bit general-purpose timer

• 2 WDOG, 1×32-bit SysTick

• 1 USART interface,

• 1 group of I2C interface,

• 1 group of SPI interface 18 I/O ports, mapping an external interrupt 64-bit chip

• unique ID 1-wire serial debug interface (SDI)

Detailed study of the CH32V003 Controller

The C-Type USB port cannot be used directly for programming purposes.

We need a programmer/debugger device to download program code on the
microcontroller. There are different types of programming devices given by
WCH but we have use one compatible with our microcontroller.

Detailed study of the CH32V003 Controller

Host Machine
(Computer)

WCH-LINKE
(Programmer)

Debug Module
of CH32v003

1-Wire
SWDIO

Detailed study of the CH32V003 Controller

Mode Status LED IDE Support chip

RISC-V Blue LED is always off wh
en idle

MounRiver Studio WCH RISC-V core chips
that support single/dual
line debugging

ARM Blue LED is always on wh
en idle

Keil/MounRiver Studio ARM core chips that
support SWD/JTAG
protocol

Detailed study of the CH32V003 Controller

RISC-V2A processor
▪ The RISC-V2A supports the EC subset of the RISC-V instruction set.

▪ The processor is managed internally in a modular fashion and contains units such as a fast
programmable interrupt controller (PFIC), extended instruction support, and more.

▪ The bus is connected to an external unit module to enable interaction between the external
function module and the core.

▪ RV32EC instruction set, small-end data mode.

▪ The processor with its minimal instruction set, multiple operating modes, and modular custom
expansion can be flexibly applied to different scenarios of microcontroller design, such as small
area low-power embedded scenarios.
• Support machine mode
• Fast Programmable Interrupt Controller (PFIC)
• 2-level hardware interrupt stack
• 1-wire serial debug interface (SDI)
• Custom extended commands

Detailed study of the CH32V003 Controller

Power supply scheme

VDD = 2.7～5.5V:

Power supply for some I/O pins and internal voltage regulator
(VDD performance gradually deteriorates if less than 2.9V when
using ADC).

Power supply monitor

▪ This product integrates a power-on reset (POR)/power-down
reset (PDR) circuit, which is always in working condition to
ensure that the system is in supply.

▪ It works when the power exceeds 2.7V; when VDD is lower
than the set threshold (VPOR/PDR), the device is placed in the
reset state without using an external reset circuit.

Detailed study of the CH32V003 Controller

Programmable voltage monitor

▪ In addition, the system is equipped with a programmable voltage monitor (PVD), which
needs to be turned on by software to compare the voltage of VDD power supply with the
set threshold VPVD.

▪ Turn on the corresponding edge interrupt of PVD, and you can receive interrupt
notification when VDD drops to the PVD threshold or rises to the PVD threshold. Refer to
Chapter 4 for the values of VPOR/PDR and VPVD.

Voltage regulator

After reset, the regulator is automatically turned on, and there are 3 operation modes
according to the application mode.

• ON mode: Normal operation, providing stable core power.

• Low-power mode: When the CPU enters Stop mode, system automatically enters
Standby mode.

Detailed study of the CH32V003 Controller

Low-power Modes:

The system supports 2 low-power modes, which can be selected for low-power consumption, short
start-up time and multiple wake-up events to achieve the best balance.

• Sleep mode

• Standby mode

External Interrupt/Event Controller

▪ External interrupt/event controller (EXTI) The external interrupt/event controller contains a total
of 8 edge detectors for generating interrupt/event requests.

▪ Each interrupt line can be independently configured with its trigger event (rising or falling edge or
double edge) and can be individually masked; the pending register maintains the status of all
interrupt requests.

▪ EXTI can detect clock cycles with pulse widths less than the internal AHB. 18 general purpose I/O
ports are optionally connected to the same external interrupt source.

Detailed study of the CH32V003 Controller

Fast Programmable Interrupt Controller (PFIC)

▪ The product's built-in Fast Programmable Interrupt Controller (PFIC) supports up to 255 interrupt
vectors, providing flexible interrupt management capabilities with minimal interrupt latency.

▪ The current product manages 4 core private interrupts and 23 peripheral interrupt management,
with other interrupt sources reserved. the registers of PFIC are all accessible in machine
privileged mode.

• 2 individually maskable interrupts

• Provide a non-maskable interrupt NMI

• Hardware interrupt stack (HPE) support without instruction overhead

• Provide 2-way meter-free interrupt (VTF)

• Vector table supports address or command mode

• Support 2-level interrupt nesting Support break tail link function

Detailed study of the CH32V003 Controller

General-purpose DMA controller

▪ The system has built-in 1 group of general-purpose DMA controllers, manages 8 channels in total,
and flexibly handles high-speed data transmission from

1. Memory to memory,
2. Peripherals to memory,
3. Memory to peripherals,

▪ and supports ring buffer mode.

▪ Each channel has a dedicated hardware DMA request logic to support one or more peripherals'
access requests to the memory.

▪ The access priority, transfer length, source address and destination address of the transfer can
be configured.

▪ The main peripherals used by DMA include: general-purpose/advanced-control/basic timers
TIMx, DAC, USART, I2C and SPI.

Detailed study of the CH32V003 Controller

Clock And Boot

 The system clock source HSI is turned on by default. After the clock is not configured or reset, the
internal 24MHz RC oscillator is used as the default CPU clock, and then an external 4~25MHz clock
or PLL clock can be additionally selected.

Analog-to-digital Converter (ADC)

▪ CH32003 is embedded with a 10-bit analog/digital converter (ADC) that shares up to eight
external channels and two internal channel samples, with programmable channel sampling times
for single, continuous, sweep or intermittent conversion.

▪ Provides analog watchdog function allows very accurate monitoring of one or more selected
channels for monitoring channel signal voltages.

▪ Support for using DMA operation. Supports external trigger delay function. When this function is
enabled, the controller delays the trigger signal according to the configured delay time when an
external trigger edge is generated, and the ADC conversion is triggered as soon as the delay time
is reached.

Detailed study of the CH32V003 Controller

Timers

The timers in the system include an advanced-control timer, a general-purpose timer, two watchdog
timers and system time base timer.

• Advanced-control timer The advanced-control timer is a 16-bit auto-loading up/down counter with a
16-bit programmable prescaler

• General-purpose timer The general-purpose timer is a 16-bit or 32-bit auto-loading up/down counter
with a programmable 16-bit prescaler and 4 independent channels.

• Independent watchdog The independent watchdog is a configurable 12-bit down counter that
supports 7 frequency division factors.

• Window Watchdog The window watchdog is a 7-bit down counter and can be set to free-running. It
can be used to reset the entire system when a problem occurs. It is driven by the main clock and has
an early warning interrupt function; in Debug mode, the counter can be frozen.

• SysTick Timer QingKe microprocessor core comes with a 32-bit incremental counter for generating
SYSTICK exceptions (exception number: 15), which can be used exclusively in real-time operating
systems to provide a "heartbeat" rhythm for the system, or as a standard 32-bit counter. It has an
automatic reload function and a programmable clock source.

Detailed study of the CH32V003 Controller

Product Packages:

TSSOP20, QFN20, SOP16, SOP8

Detailed study of the CH32V003 Controller

Contents

• Low Cost Microcontroller Architecture

• Introduction to CH32 Family of Microcontrollers

• Detailed study of the CH32V003 Controller

• Applications and Use Cases for CH32V003

• Debugging Tools and Techniques

• Introduction to System Clock

• Header File Explained

Applications and Use Cases for CH32V003

The CH32V003 Microcontroller is proving to be a powerhouse, as developers are creating
impressively innovative projects with it. The complexity and sophistication of these projects are
remarkable, considering the microcontroller's small size.

Lets see some interesting projects by ENGINEERS.

Applications and Use Cases for CH32V003

1) CH32V003 based Cheap RISCV Supercluster

A small scale low-cost computing cluster built using 16 CH32V003 microcontrollers, each priced at
just 10 cents, on a single PCB. This project explores the potential of low cost Clusters and pushing

the boundaries of what's possible with small, affordable hardware.

Applications and Use Cases for CH32V003

2) CH32V003 based FM Transmitter

It is compact battery powered FM transmitter KT0803K or KT0803L Radio-Station-on-a-Chip, this is
the core of the project along with CH32V003 which is the main MCU. The KT0803K/L is a low cost
Digital Stereo FM Transmitter ASIC, It takes audio signal input and transmits the modulated FM
signal over a short range.

Applications and Use Cases for CH32V003

3) RISCV Mini Game Console

Mini Game Console utilizing the CH32V003J4M6 ultra-cheap (10 cents by the time of writing) 32-bit
RISC-V microcontroller, an SSD1306 128x64 pixels OLED display and CR/LIR2032 coin cell battery
holder.

Applications and Use Cases for CH32V003

4) Battery Powered Pocket CO2 Sensor

The project is a pocket size battery powered CO2 Sensor or monitor. It is built using the incredibly
cheap CH32V003 microcontroller. The Project uses 128×64 SSD1306 OLED Display, TP4057 3.7V LiPo
Battery charge controller, and a Sensirion SCD40 CO2 sensor, Micro USB port for charging the
battery.

Applications and Use Cases for CH32V003
The CH32V003's low cost, small size, and RISC-V architecture make it an attractive option for a wide
range of applications, from simple DIY projects to complex industrial systems.

Here's an expanded list of potential uses for the CH32V003 microcontroller:

1. IoT Devices: Home automation, smart sensors, and wearables

2. Robotics: Control and navigation systems for small robots

3. Industrial Automation: Monitoring and control of industrial processes

4. Medical Devices: Portable medical devices, health monitors, and fitness trackers

5. Consumer Electronics: Smart home devices, gaming consoles, and multimedia players

6. Automotive Systems: In-vehicle infotainment, navigation, and sensor systems

7. Educational Projects: Robotics, electronics, and programming learning platforms

8. Wearable Technology: Smartwatches, fitness trackers, and health monitors

9. Security Systems: Access control, surveillance, and alarm systems

10. Environmental Monitoring: Air and water quality monitoring, weather stations

Applications and Use Cases for CH32V003

11. Portable Instruments: Multimeters, oscilloscopes, and signal generators

12. Smart Energy Management: Energy monitoring and control systems

13. Communication Devices: Modems, routers, and wireless communication modules

14. Gaming Platforms: Handheld game consoles and gaming peripherals

15. Scientific Instruments: Data loggers, spectrometers, and laboratory equipment

16. Standalone Systems: Self-contained devices for specific tasks (e.g., GPS trackers, digital signage)

17. Edge Computing: Distributed computing nodes for real-time data processing

18. Machine Learning: TinyML applications, neural network processing, and AI-enabled devices

19. Networked Devices: Ethernet-enabled devices for industrial control, monitoring, and
automation

20. Wireless Sensor Networks: Distributed sensor nodes for industrial,

Contents

• Low Cost Microcontroller Architecture

• Introduction to CH32 Family of Microcontrollers

• Detailed study of the CH32V003 Controller

• Applications and Use Cases for CH32V003

• Debugging Tools and Techniques

• Introduction to System Clock

• Header File Explained

Debugging and Analysis Techniques

Embedded systems are specialized computer systems designed for specific purposes. They
• Control
• Monitor
• Assist

in the operation of equipment, machinery, or a larger system. These systems are present in various
industries, such as automotive, consumer electronics, aerospace, and medical devices.

▪ Debugging is a crucial aspect of embedded systems development. As these systems are
responsible for critical operations, any error or malfunction can have severe consequences.

▪ Debugging helps identify and fix errors, ensuring the system functions as expected.

▪ Moreover, it contributes to the overall quality, reliability, and performance of the embedded system

Debugging and Analysis Techniques

Understanding Debugging

Debugging is the process of
• Identifying,
• Analyzing,
• Resolving issues within a software or hardware system.

It involves
• finding the root cause of problems,
• understanding their impact, and
• implementing solutions to ensure proper functioning.

Debugging and Analysis Techniques

Goals and Objectives of Debugging

• The primary goal of debugging is to ensure that a system functions as intended. This involves
identifying and fixing errors, optimizing performance, and enhancing stability. Debugging aims to:

• Locate and resolve software bugs and hardware issues.

• Improve system performance and efficiency.

• Enhance the user experience by fixing usability issues.

• Ensure compliance with industry standards and best practices.

• Maintain system stability and reliability.

Debugging and Analysis Techniques

Importance of Debugging in Embedded Systems

Debugging plays a vital role in embedded systems development. Due to the specialized nature of
these systems, errors can lead to severe consequences, such as equipment malfunction or even
safety hazards.

• Debugging helps ensure the proper functioning of embedded systems by:

• Eliminating errors that can compromise system performance and safety.

• Optimizing resource usage, which is crucial in systems with limited resources.

• Enhancing system stability and reliability.

• Improving overall system quality and user satisfaction.

By thoroughly understanding and mastering debugging techniques, embedded systems developers
can create high-quality, reliable, and efficient systems that meet the demands of various industries.

Debugging and Analysis Techniques

Common Debugging Challenges in Embedded Systems
1. Limited Resources and Processing Power

Embedded systems often operate under strict resource constraints, such as limited memory,
processing power, and power consumption.

Debugging in such environments can be challenging, as developers must balance the need for
debugging tools and techniques with the available resources. This may require creative approaches
and careful planning to ensure effective debugging without impacting system performance.

2. Real-Time Constraints

Many embedded systems operate in real-time, meaning they must respond to events and inputs
within strict time constraints. Debugging real-time systems can be challenging, as developers must
not only identify and resolve issues but also ensure that the system continues to meet its real-time
requirements.

This often involves analyzing and optimizing the timing and synchronization aspects of the system.

Debugging and Analysis Techniques

Complex Hardware and Software Interactions

Embedded systems typically involve complex interactions between hardware and software
components. Debugging these systems requires a deep understanding of both domains, as well as
the ability to analyze and trace issues across the hardware-software boundary. This can be
challenging, particularly when dealing with proprietary or custom hardware.

Concurrency Issues

Many embedded systems rely on concurrent processing to achieve their goals, whether through
multi-threading, multi-processing, or other parallel processing techniques.

Debugging concurrent systems introduces additional complexity, as developers must identify and
resolve issues related to synchronization, race conditions, and other concurrency-related challenges.

Debugging and Analysis Techniques

Debugging Techniques for Embedded Systems

1. Static Code Analysis

Static code analysis involves examining the source code of a system without executing it. It helps
identify potential issues such as syntax errors, memory leaks, and coding standard violations. The
benefits of static code analysis include early detection of errors, improved code quality, and reduced
development time.

Some popular static code analysis tools for embedded systems include:

PC-Lint: A widely used tool for analyzing C and C++ code

Cppcheck: An open-source tool for detecting bugs in C and C++ code

CodeSonar: A commercial tool for analyzing C, C++, Java, and Ada code

MISRA-C: A set of coding standards for embedded systems development in C

Debugging and Analysis Techniques

2. Dynamic Analysis

Dynamic analysis involves monitoring the behavior of a system during runtime. It helps identify issues
such as memory corruption, race conditions, and performance bottlenecks. The benefits of dynamic
analysis include real-time error detection, improved system performance, and increased reliability.

Some popular dynamic analysis tools for embedded systems include:

Valgrind: An open-source tool for detecting memory management issues

GDB: The GNU Debugger, a widely used debugger for various programming languages

JTAG: A hardware debugging interface used for on-chip debugging and programming

Tracealyzer: A commercial tool for visualizing and analyzing real-time system behavior

Debugging and Analysis Techniques

4. In-Circuit Debugging
In-circuit debugging involves connecting a debugger directly to a running embedded system, allowing
developers to monitor and control its execution. Benefits include real-time debugging capabilities,
improved system visibility, and the ability to debug hardware-related issues.

Some popular in-circuit debugging tools for embedded systems include:

JTAG: A widely used hardware debugging interface

Segger J-Link: A popular JTAG/SWD debugger for ARM-based systems

P&E Micro: A provider of in-circuit debugging solutions for various microcontroller platforms

Atmel-ICE: An in-circuit debugger and programmer for Atmel microcontrollers.

SWD: Single wire Debug (used my WCH MCus)

Debugging and Analysis Techniques

Debugging and Analysis Techniques

5. Hardware Debugging

Hardware debugging involves diagnosing and fixing issues related to the physical components of an
embedded system, such as circuitry, sensors, and actuators. Benefits include improved system
reliability, reduced development time, and the ability to identify and resolve hardware-specific issues.

Some popular hardware debugging tools for embedded systems include:

• Oscilloscopes: Essential tools for analyzing and troubleshooting electrical signals

• Logic Analyzers: Devices used for monitoring and analyzing digital signals

• Protocol Analyzers: Tools for capturing and analyzing communication data between system
components

• Power Analyzers: Instruments for measuring and analyzing power consumption in embedded
systems

Debugging and Analysis Techniques

5. Hardware Debugging Tools

Oscilloscope

Logic Analyzers

Contents

• Low Cost Microcontroller Architecture

• Introduction to CH32 Family of Microcontrollers

• Detailed study of the CH32V003 Controller

• Applications and Use Cases for CH32V003

• Debugging Tools and Techniques

• Introduction to System Clock

• Header File Explained

Systems Clock

What is a Clock ?

The clock generates a continuous sequence of
pulses or oscillations, which are used to
synchronize the operations of various
components within the embedded system.cv

Clock Speed/Frequency: The frequency of the clock (measured in Hertz, Hz) determines the speed at which
the processor and other components operate. A higher clock speed typically allows the system to perform
tasks more quickly, but also requires more power and can generate more heat.

Terms related to Clock

• Amplitude: The maximum voltage level of a clock signal from its baseline.

• Positive Half: The time interval during which the clock signal is high.

• Negative Half: The time interval during which the clock signal is low.

• Rising Edge: The transition of the clock signal from low to high.

• Falling Edge: The transition of the clock signal from high to low

• Pulse Width: The duration of time the clock signal remains at its high level during one cycle.

Sources of Clock in Embedded Systems

Clock Sources: Embedded systems can use different types of clock sources, including:

1. RC Oscillators: Less precise but can be cheaper and more compact.

2. Crystal Oscillators: Commonly used for their stability and accuracy.

RC Oscillators vs Crystal Oscillators

Feature RC Oscillators Crystal Oscillators

Principle Uses resistors and capacitors to
generate oscillations.

Uses the mechanical resonance of a
quartz crystal to produce oscillations.

Accuracy Less accurate; frequency can drift with
temperature and supply voltage
changes.

Highly accurate; stable frequency due to
the crystal’s precise resonance.

Stability Less stable; affected by temperature,
aging, and supply voltage variations.

Highly stable; minimal drift with
temperature and voltage changes.

Frequency Range Can be designed for a wide range of
frequencies but typically less precise.

Provides precise frequencies, usually in
specific ranges (e.g., MHz to GHz).

Size Generally smaller and simpler in design. Larger and more complex due to the
crystal's packaging.

Cost Generally cheaper to produce and
implement.

Typically more expensive due to the
precision required.

Reset and Clock Control (RCC)

The controller provides different forms of resets and configurable clock tree structures based on the division of

power areas and peripheral power management considerations in the application.

Main Features:

➢ Multiple reset forms

➢ Multiple clock sources, bus clock management

➢ Built-in external crystal oscillation monitoring and clock security system

➢ Independent management of each peripheral clock: reset, on, off

➢ Supports internal clock output

Reset:

There are two types of Resets provided by the system:

➢ Power-on Rest

➢ System Reset

Reset and Clock Control (RCC)

➢ Power Reset

When a power Reset occurs, it will reset all registers. A power Reset is generated when the following event

occurs:

▪ Power-up/power-down reset (POR/PDR)

➢ System Reset

When a system Reset occurs, it will
reset the reset flag in addition to the
control/status register RCC_RSTSCKR
and all the registers.

The source of the reset event is
identified by looking at the reset status
flag bit in the RCC_RSTSCKR register.

System reset structure

Reset and Clock Control (RCC)

Page Number 14

High-Speed Clock (HSI/HSE)

HSI (High-Speed Internal Clock)

• Description:

• Internal 24 MHz RC oscillator.

• Provides system clock without external devices.

• Short start-up time.

• Control and Status Register Bits:

• HSION: Enables or disables HSI (bit in RCC_CTLR register).

• HSIRDY: Indicates stability of HSI (bit in RCC_CTLR register).

• HSIRDYIE: Generates interrupt on HSI ready status (bit in RCC_INTR register).

• Default Settings:

• HSION: Set to 1 (enabled by default).

• HSIRDY: Set to 1 (HSI stable by default).

• Backup Clock:

• HSI used as a backup clock source if HSE crystal oscillator fails.

High-Speed Clock (HSI/HSE)

High-Speed External Clock (HSE)

Description:

• External High-Speed Clock:

• Can be sourced from an external crystal or ceramic resonator.

• Alternatively, an external high-speed clock signal can be fed directly into the system.

External Crystal/Ceramic Resonator (HSE Crystal):

• Frequency Range:

• 4-25 MHz

• Provides a more accurate clock source compared to internal oscillators.

• Control and Status:

• HSEON: Enables or disables HSE (bit in RCC_CTLR register).

• HSERDY: Indicates stability of HSE crystal oscillation (bit in RCC_CTLR register).

• Clock fed into the system only after HSERDY is set to 1.

• HSERDYIE: Generates interrupt on HSE ready status (bit in RCC_INTR register).

Condition of Hardware Engineers

Programming

Datasheet

Clock Registers

Page Number 14

Clock Registers

Page Number 23

Contents

• Low Cost Microcontroller Architecture

• Introduction to CH32 Family of Microcontrollers

• Detailed study of the CH32V003 Controller

• Applications and Use Cases for CH32V003

• Debugging Tools and Techniques

• Introduction to System Clock

• Header File Explained

Embedded C Programming for RISC-V Micro-controller

Understanding Header files of CH32v003
1) Header Guards

#ifndef __CORE_RISCV_H__

#define __CORE_RISCV_H__

These lines ensure that the contents of the header file are only included once in a compilation unit. If
__CORE_RISCV_H__ is not defined, it defines it and includes the rest of the file. This is a common practice
in C/C++ header files.

2) Conditional Compilation for C++

#ifdef __cplusplus

extern "C" {

#endif

This section checks if the code is being compiled with a C++ compiler and adds the extern "C" to ensure
proper linking with C code.

Embedded C Programming for RISC-V Micro-controller

Understanding Header files of CH32v003

/* IO definitions */

#ifdef __cplusplus

#define __I volatile /* defines 'read only' permissions */

#else

#define __I volatile const /* defines 'read only' permissions */

#endif

#define __O volatile /* defines 'write only' permissions */

#define __IO volatile /* defines 'read / write' permissions */

These macros define the permissions for I/O (Input/Output) operations. __I is for read-only, __O is
for write-only, and __IO is for read/write

Embedded C Programming for RISC-V Micro-controller

Standard Peripheral Library old types

/* Standard Peripheral Library old types (maintained for legacy purpose) */

typedef __I uint32_t vuc32; /* Read Only */

typedef __I uint16_t vuc16; /* Read Only */

typedef __I uint8_t vuc8; /* Read Only */

These typedefs define old types for backward compatibility. For example, vuc32 is a volatile read-
only 32-bit unsigned integer.

Enumerating Error status/ Functional States/ Flag status

typedef enum {NoREADY = 0, READY = !NoREADY} ErrorStatus;

typedef enum {DISABLE = 0, ENABLE = !DISABLE} FunctionalState;

typedef enum {RESET = 0, SET = !RESET} FlagStatus, ITStatus;

Embedded C Programming for RISC-V Micro-controller

Memory-Mapped Register Structures

typedef struct{

 // ... (fields for Program Fast Interrupt Controller - PFIC)

 } PFIC_Type; This defines a structure for the Program Fast Interrupt Controller (PFIC) with its various
registers as fields. PFIC seems to be a component responsible for managing interrupts.

PFIC is a macro that is defined to represent a specific memory-mapped structure. Let's take a closer
look at the relevant definition:

 #define PFIC ((PFIC_Type *) 0xE000E000)

Here, PFIC is defined as a pointer to a structure of type PFIC_Type, and it is initialized with the
memory address 0xE000E000. The type PFIC_Type is a user-defined structure type that likely
represents the memory layout of a specific hardware peripheral, possibly related to interrupt
handling.

Embedded C Programming for RISC-V Micro-controller

	Slide 1
	Slide 2: Program Flow
	Slide 3: Contents
	Slide 4: Contents
	Slide 5: Characteristics of Low-Cost Microcontrollers
	Slide 6: Characteristics of Low-Cost Microcontrollers
	Slide 7: Popular Low-Cost Microcontroller Families
	Slide 8
	Slide 9: Basic Features in Low-Cost Microcontroller
	Slide 10: Basic Features in Low-Cost Microcontroller
	Slide 11: Basic Hardware in Low-Cost Microcontroller
	Slide 12: Contents
	Slide 13: Introduction to CH32 Family of Microcontrollers
	Slide 14
	Slide 15: System Architecture: CH32V003
	Slide 16
	Slide 17: Bus Architecture
	Slide 18: Memory Architecture
	Slide 19
	Slide 20: Contents
	Slide 21: Detailed study of the CH32V003 Controller
	Slide 22: Detailed study of the CH32V003 Controller
	Slide 23: Detailed study of the CH32V003 Controller
	Slide 24: Detailed study of the CH32V003 Controller
	Slide 25: Detailed study of the CH32V003 Controller
	Slide 26: Detailed study of the CH32V003 Controller
	Slide 27: Detailed study of the CH32V003 Controller
	Slide 28: Detailed study of the CH32V003 Controller
	Slide 29: Detailed study of the CH32V003 Controller
	Slide 30: Detailed study of the CH32V003 Controller
	Slide 31: Detailed study of the CH32V003 Controller
	Slide 32: Detailed study of the CH32V003 Controller
	Slide 33: Detailed study of the CH32V003 Controller
	Slide 34: Detailed study of the CH32V003 Controller
	Slide 35: Contents
	Slide 36: Applications and Use Cases for CH32V003
	Slide 37: Applications and Use Cases for CH32V003
	Slide 38: Applications and Use Cases for CH32V003
	Slide 39: Applications and Use Cases for CH32V003
	Slide 40: Applications and Use Cases for CH32V003
	Slide 41: Applications and Use Cases for CH32V003
	Slide 42: Applications and Use Cases for CH32V003
	Slide 43: Contents
	Slide 44: Debugging and Analysis Techniques
	Slide 45: Debugging and Analysis Techniques
	Slide 46: Debugging and Analysis Techniques
	Slide 47: Debugging and Analysis Techniques
	Slide 48: Debugging and Analysis Techniques
	Slide 49: Debugging and Analysis Techniques
	Slide 50: Debugging and Analysis Techniques
	Slide 51: Debugging and Analysis Techniques
	Slide 52: Debugging and Analysis Techniques
	Slide 53: Debugging and Analysis Techniques
	Slide 54: Debugging and Analysis Techniques
	Slide 55: Debugging and Analysis Techniques
	Slide 56: Contents
	Slide 57: Systems Clock
	Slide 58: Terms related to Clock
	Slide 59: Sources of Clock in Embedded Systems
	Slide 60: RC Oscillators vs Crystal Oscillators
	Slide 61: Reset and Clock Control (RCC)
	Slide 62: Reset and Clock Control (RCC)
	Slide 63: Reset and Clock Control (RCC)
	Slide 64: High-Speed Clock (HSI/HSE)
	Slide 65: High-Speed Clock (HSI/HSE)
	Slide 66: Condition of Hardware Engineers
	Slide 67: Clock Registers
	Slide 68: Clock Registers
	Slide 69: Contents
	Slide 70: Embedded C Programming for RISC-V Micro-controller
	Slide 71: Embedded C Programming for RISC-V Micro-controller
	Slide 72: Embedded C Programming for RISC-V Micro-controller
	Slide 73: Embedded C Programming for RISC-V Micro-controller
	Slide 74: Embedded C Programming for RISC-V Micro-controller

