
 Hands On Session o Gem5 Simulator

• Step 1 : First of all how to access HPC cluster ?

Open terminal and run this command:

ssh -X riscv-sim@10.0.0.153

Figure 1: Interface of HPC Cluster

• Step 2: Run these commands in the terminal:

cd demo_simulators/

• Step 3: Create directory of your name:

mkdir qadeer

• Step 4: Write C code of hello world

nano helloworld.c

• Step 5: Create riscv elf format binary using gcc

riscv64-unknown-elf-gcc -o hello helloworld.c

mailto:riscv-sim@10.0.0.153

Summery of the commands above is below:

Figure 2: Summary of commands

• Step 6 : Create a python script. Its also provided in demo simulators directory with complete

explanation. You can copy it

cp scriptgem5.py yourdirectory

• Step 7 : Run this command and set a path to your binary

nano script.py

• Step 8: Run it on gem5

gem5.opt -d output_directory script.py

• Step 9: Go to output_directory and see the results

Summary of commands is shown below

Figure 1 : Summary of commands

• Step 10 :Open the config.pdf file using

xdg-open config.dot.pdf

• Step 11: Open the stats.txt file using cat stats.txt

Tasks

Task 1: Configure two rv64 based system using O3CPU and TimingSimpleCPU having same set of

configurations and workload. Measure their performance and observe which one has higher

performance? Hint: measure execution time

Script With explanation:

import os

import m5

from m5.objects import *

Create the system object that will represent the entire simulated computer.

system = System()

Create a clock domain for the system with a clock speed of 1 GHz.

system.clk_domain = SrcClockDomain()

system.clk_domain.clock = "1GHz"

system.clk_domain.voltage_domain = VoltageDomain()

Set the memory mode to "timing," which models the time it takes for memory operations.

system.mem_mode = "timing"

Define the memory range to be 512MB.

system.mem_ranges = [AddrRange("512MB")]

Instantiate a RISC-V TimingSimpleCPU, a simple CPU model for RISC-V architecture.

system.cpu = RiscvTimingSimpleCPU()

Create a system-wide crossbar (membus) to connect various components.

system.membus = SystemXBar()

Connect the CPU's instruction and data cache ports to the system bus.

system.cpu.icache_port = system.membus.cpu_side_ports

system.cpu.dcache_port = system.membus.cpu_side_ports

Create an interrupt controller for the CPU, necessary for handling interrupts.

system.cpu.createInterruptController()

Instantiate a memory controller and assign it DDR3 memory with a specific configuration.

system.mem_ctrl = MemCtrl()

system.mem_ctrl.dram = DDR3_1600_8x8()

system.mem_ctrl.dram.range = system.mem_ranges[0]

system.mem_ctrl.port = system.membus.mem_side

