
Chapter 5: Universal Synchronous Asynchronous Receiver

Transmitter (USART)

5.1 Introduction to UART:

In UART communication, two UARTs communicate directly with each other. The transmitting UART

converts parallel data from a controlling device like a CPU into serial form, transmits it in serial to the

receiving UART, which then converts the serial data back into parallel data for the receiving device. Only

two wires are needed to transmit data between two UARTs. Data flows from the Tx pin of the transmitting

UART to the Rx pin of the receiving UART:

UARTs transmit data asynchronously, which means there is no clock signal to synchronize the output of

bits from the transmitting UART to the sampling of bits by the receiving UART. Instead of a clock signal,

the transmitting UART adds start and stop bits to the data packet being transferred.

Wires Used Two

Maximum Speed Refer to the exact max Baud rate
for the specific Baud Rate

Serial or Parallel Serial

Max # of Slaves 1

Max # of Masters 1

• The UART that is going to transmit data receives the data from a data bus. The data bus is used to

send data to the UART by another device like a CPU, memory, or microcontroller.

• Data is transferred from the data bus to the transmitting UART in parallel form.

• After the transmitting UART gets the parallel data from the data bus, it adds a start bit, a parity

bit, and a stop bit, creating the data packet.

• Next, the data packet is output serially, bit by bit at the Tx pin. The receiving UART reads the data

packet bit by bit at its Rx pin.

• The receiving UART then converts the data back into parallel form and removes the start bit, parity

bit, and stop bits. Finally, the receiving UART transfers the data packet in parallel to the data bus

on the receiving end.

UART transmitted data is organized into packets. Each packet contains 1 start bit, 5 to 9 data bits

(depending on the UART), an optional parity bit, and 1 or 2 stop bits.

The UART data transmission line is normally held at a high voltage level when it’s not transmitting data.

To start the transfer of data, the transmitting UART pulls the transmission line from high too low for one

clock cycle. When the receiving UART detects the high to low voltage transition, it begins reading the bits

in the data frame at the frequency of the baud rate.

Start Bit:

START BIT The UART data transmission line is normally held at a high voltage level when it’s not

transmitting data. To start the transfer of data, the transmitting UART pulls the transmission line from

high to low for one clock cycle. When the receiving UART detects the high to low voltage transition, it

begins reading the bits in the data frame at the frequency of the baud rate.

Data Frame:

The data frame contains the actual data being transferred. It can be 5 bits up to 8 bits long if a parity bit is

used. If no parity bit is used, the data frame can be 9 bits long. In most cases, the data is sent with the

least significant bit first.

PARITY Parity:

Why parity bit is required?

PARITY Parity describes the evenness or oddness of a number. The parity bit is a way for the receiving

UART to tell if any data has changed during transmission. Bits can be changed by electromagnetic radiation,

mismatched baud rates, or long-distance data transfers.

How it works?

After the receiving UART reads the data frame, it counts the number of bits with a value of 1 and checks if

the total is an even or odd number. If the parity bit is a 0 (even parity), the 1 bit in the data frame should

total to an even number. If the parity bit is a 1 (odd parity), the 1 bit in the data frame should total to an

odd number.

When the parity bit matches the data, the UART knows that the transmission was free of errors. But if the

parity bit is a 0, and the total is odd; or the parity bit is a 1, and the total is even, the UART knows that bits

in the data frame have changed.

5.1.1 Steps for UART:

1) The transmitting UART receives data in parallel from the data bus.

2) The transmitting UART adds the start bit, parity bit, and the stop bit(s) to the data frame:

3) The entire packet is sent serially from the transmitting UART to the receiving UART. The receiving

UART samples the data line at the pre-configured baud rate.

4) The receiving UART discards the start bit, parity bit, and stop bit from the data frame.

5) The receiving UART converts the serial data back into parallel and transfers it to the data bus on

the receiving end.

5.1.2 Advantages and Disadvantages of UART:

Advantages Disadvantages

• Only uses two wires The size of the data frame is limited to a
maximum of 9 bits

• No clock signal is necessary Doesn’t support multiple slave or multiple master
systems

• Has a parity bit to allow for error
checking

The baud rates of each UART must be within 10%
of each other

• The structure of the data packet can be
changed as long as both sides are set up
for it.

• Well documented and widely used
method

5.2 UART with CH32V003 MCU:

The module contains one Universal Synchronous Asynchronous Transceiver USART1.

5.2.1 Main Features

• Full-duplex or half-duplex synchronous or asynchronous communication

• NRZ data format

• Fractional baud rate generator, up to 3Mbps

• Programmable data length

• Configurable stop bits

• Support LIN, IrDA encoders, smart cards (dnt knw what this is)

• DMA support

• Multiple interrupt sources

Let’s first go to the datasheet of Ch32003 to observe the pin configuration of the MCU.

Here we can see pin PD5 and PD6 (on CH32v003 MCU pins are already named as Tx and Rx) have default

roles of UTx and URx. Alternate functions can b used to configure the other pins for UART. But here we

will use default functions.

As you know we used WCH-LINKE as the programmer/debugger module to download the code on MCU.

Here we can use it for the serial communication purpose.

5.3 USART Example:

*This routine demonstrates that USART1 receives the data sent by CH341 and inverts it and sends it

(baud rate 115200).

*Hardware connection: (PD5 – Rx) & (PD6 – Tx)

#include "debug.h"

/* Global define */

/* Global Variable */

vu8 val;

/***

 * @fn USARTx_CFG

 *

 * @brief Initializes the USART2 & USART3 peripheral.

 *

 * @return none

 */

void USARTx_CFG(void)

{

 GPIO_InitTypeDef GPIO_InitStructure = {0};

 USART_InitTypeDef USART_InitStructure = {0};

 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD | RCC_APB2Periph_USART1,

ENABLE);

 /* USART1 TX-->D.5 RX-->D.6 */

 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5;

 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;

 GPIO_Init(GPIOD, &GPIO_InitStructure);

 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;

 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;

 GPIO_Init(GPIOD, &GPIO_InitStructure);

 USART_InitStructure.USART_BaudRate = 115200;

 USART_InitStructure.USART_WordLength = USART_WordLength_8b;

 USART_InitStructure.USART_StopBits = USART_StopBits_1;

 USART_InitStructure.USART_Parity = USART_Parity_No;

 USART_InitStructure.USART_HardwareFlowControl =

USART_HardwareFlowControl_None;

 USART_InitStructure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx;

 USART_Init(USART1, &USART_InitStructure);

 USART_Cmd(USART1, ENABLE);

}

/***

 * @fn main

 *

 * @brief Main program.

 *

 * @return none

 */

int main(void)

{

 NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1);

 SystemCoreClockUpdate();

 Delay_Init();

#if (SDI_PRINT == SDI_PR_OPEN)

 SDI_Printf_Enable();

#else

 USART_Printf_Init(115200);

#endif

 printf("SystemClk:%d\r\n",SystemCoreClock);

 printf("ChipID:%08x\r\n", DBGMCU_GetCHIPID());

 USARTx_CFG();

 while(1)

 {

 while(USART_GetFlagStatus(USART1, USART_FLAG_RXNE) == RESET)

 {

 /* waiting for receiving finish */

 }

 val = (USART_ReceiveData(USART1));

 USART_SendData(USART1, ~val);

 while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET)

 {

 /* waiting for sending finish */

 }

 }

}

