
Chapter 6 Inter Integrated Circuit Communication

6.1 Introduction:

The Inter-Integrated Circuit (I2C) Protocol is a protocol intended to allow multiple "peripheral" digital

integrated circuits ("chips") to communicate with one or more "controller" chips.

6.1.1 Why Use I2C?

• I2C combines the best features of SPI and UARTs.

• With I2C, you can connect multiple slaves to a single master (like SPI) and you can have multiple

masters controlling single, or multiple slaves.

• This is really useful when you want to have more than one microcontroller logging data to a single

memory card or displaying text to a single LCD.

• Most I2C devices can communicate at 100kHz (Standard mode) or 400kHz (Fast mode) and up to 1

Mbit/s (Fast-mode Plus), or up to 3.4 Mbit/s (High-speed mode).

Like UART communication, I2C only uses two wires to transmit data between devices:

SDA (Serial Data) – The line for the master and slave to send and receive data.

SCL (Serial Clock) – The line that carries the clock signal.

I2C is a serial communication protocol, so data is transferred bit by bit along a single wire (the SDA line).

Like SPI, I2C is synchronous, so the output of bits is synchronized to the sampling of bits by a clock signal

shared between the master and the slave. The clock signal is always controlled by the master.

6.1.2 How I2C Works?
With I2C, data is transferred in messages. Messages are broken up into frames of data. Each message has

an address frame that contains the binary address of the slave, and one or more data frames that contain

the data being transmitted. The message also includes start and stop conditions, read/write bits, and
ACK/NACK bits between each data frame:

Start Condition: The SDA line switches from a high voltage level to a low voltage level before the SCL

line switches from high to low.

Stop Condition: The SDA line switches from a low voltage level to a high voltage level after the SCL line
switches from low to high.

Address Frame: A 7- or 10-bit sequence unique to each slave that identifies the slave when the master

wants to talk to it.
Read/Write Bit: A single bit specifying whether the master is sending data to the slave (low voltage level)

or requesting data from it (high voltage level).

ACK/NACK Bit: Each frame in a message is followed by an acknowledge/no-acknowledge bit. If
an address frame or data frame was successfully received, an ACK bit is returned to the sender from the

receiving device.

Addressing:

I2C doesn’t have slave select lines like SPI, so it needs another way to let the slave know that data is being

sent to it, and not another slave. It does this by addressing. The address frame is always the first frame after

the start bit in a new message.
The master sends the address of the slave it wants to communicate with to every slave connected to it. Each

slave then compares the address sent from the master to its own address. If the address matches, it sends a

low voltage ACK bit back to the master. If the address doesn’t match, the slave does nothing and the SDA

line remains high.

Read/write bit

The address frame includes a single bit at the end that informs the slave whether the master wants to write

data to it or receive data from it. If the master wants to send data to the slave, the read/write bit is a low
voltage level. If the master is requesting data from the slave, the bit is a high voltage level.

The Data frame

After the master detects the ACK bit from the slave, the first data frame is ready to be sent. The data frame

is always 8 bits long, and sent with the most significant bit first. Each data frame is immediately followed

by an ACK/NACK bit to verify that the frame has been received successfully.

The ACK bit must be received by either the master or the slave (depending on who is sending the data)

before the next data frame can be sent. After all of the data frames have been sent, the master can send a

stop condition to the slave to halt the transmission. The stop condition is a voltage transition from low to
high on the SDA line after a low to high transition on the SCL line, with the SCL line remaining high.

6.1.2 Steps of I2C Data Transmission:

1. The master sends the start condition to every connected slave by switching the SDA line from a
high voltage level to a low voltage level before switching the SCL line from high to low.

2. The master sends each slave the 7- or 10-bit address of the slave it wants to communicate with,

along with the read/write bit. (Usually the Read bit is “1” and Write Bit is “0”.)

3. Each slave compares the address sent from the master to its own address. If the address matches,

the slave returns an ACK bit by pulling the SDA line low for one bit. If the address from the master

does not match the slave’s own address, the slave leaves the SDA line high.

4. The master sends or receives the data frame:

5. After each data frame has been transferred, the receiving device returns another ACK bit to the

sender to acknowledge successful receipt of the frame:

6. To stop the data transmission, the master sends a stop condition to the slave by switching SCL high

before switching SDA high:

6.2.3 Single Master with Multiple Slaves:

Because I2C uses addressing, multiple slaves can be controlled from a single master. With a 7-bit address,
128 (27) unique address are available. Using 10-bit addresses is uncommon, but provides 1,024 (210)

unique addresses. To connect multiple slaves to a single master, wire them like this, with 4.7K Ohm pull-

up resistors connecting the SDA and SCL lines to Vcc:

6.2.4 Multiple Masters with Multiple Slaves:

Multiple masters can be connected to a single slave or multiple slaves. The problem with multiple masters

in the same system comes when two masters try to send or receive data at the same time over the SDA line.
To solve this problem, each master needs to detect if the SDA line is low or high before transmitting a

message.

If the SDA line is low, this means that another master has control of the bus, and the master should wait to

send the message. If the SDA line is high, then it’s safe to transmit the message. To connect multiple masters
to multiple slaves, use the following diagram, with 4.7K Ohm pull-up resistors connecting the SDA and

SCL lines to Vcc:

6.2 I2C with CH32v003:

6.2.1 Main Features

• Support master and slave modes

• Support 7-bit or 10-bit addresses

• Slave devices support dual 7-bit addresses

• Support two speed modes: 100KHz and 400KHz

• Multiple status modes, multiple error flags

• Support extended clock function

• 2 interrupt vectors

• DMA support (Direct Memory Access)

• Support PEC (Packet Error Checking or Packet Error Code)

• SMBus compatible

I2C is a half-duplex bus that can only operate in one of the following four modes at the same time: master

device transmit mode, master device receive mode, slave device transmit mode and slave device receive

mode. The I2C module works in slave mode by default and automatically switches to master mode when a
start condition is generated and to slave mode when arbitration is lost or a stop signal is generated. the I2C

module supports multi-master functionality. When working in master mode, the I2C module actively emits

data and addresses. Both data and address are transmitted in 8-bit units, with the high bit before and the low

bit after. After the start event is a one-byte (in 7-bit address mode) or two-byte (in 10-bit address mode)
address, and for every 8-bit data or address sent by the host, the slave needs to reply with an answer ACK,

which pulls the SDA bus low, as shown in Figure 13-1.

In order to work properly the I2C must be fed with the correct clock, which is a minimum of 2MHz in
standard mode and 4MHz in fast mode.

6.3 I2C Example code:

In this example code we connect two CH32 modules and perform I2C communication

when they are powered on at the same time.
7. /********************************** (C) COPYRIGHT

8. * File Name : main.c
9. * Author : WCH
10. * Version : V1.0.0

11. * Date : 2023/12/22

12. * Description : Main program body.

13.

14. * Copyright (c) 2021 Nanjing Qinheng Microelectronics Co., Ltd.

15. * Attention: This software (modified or not) and binary are used

for

16. * microcontroller manufactured by Nanjing Qinheng

Microelectronics.

17.

********/

18.

19. /*

20. *@Note

21. *7-bit addressing mode, master/slave mode, transceiver routine:

22. *I2C1_SCL(PC2)\I2C1_SDA(PC1).

23. *This routine demonstrates that Master sends and Slave receives.

24. *Note: The two boards download the Master and Slave programs

respectively,

25. * and power on at the same time.

26. * Hardware connection:

27. * PC2 -- PC2

28. * PC1 -- PC1

29. *

30. */

31.

32. #include "debug.h"

33.

34. /* I2C Mode Definition */

35. #define HOST_MODE 0

36. #define SLAVE_MODE 1

37.

38. /* I2C Communication Mode Selection */

39. #define I2C_MODE HOST_MODE

40. //#define I2C_MODE SLAVE_MODE

41.

42. /* Global define */

43. #define Size 6

44. #define RXAdderss 0x02

45. #define TxAdderss 0x02

46.

47. /* Global Variable */

48. u8 TxData[Size] = { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06 };

49. u8 RxData[5][Size];

50.

51. /**

52. * @fn IIC_Init

53. *

54. * @brief Initializes the IIC peripheral.

55. *

56. * @return none

57. */

58. void IIC_Init(u32 bound, u16 address)

59. {

60. GPIO_InitTypeDef GPIO_InitStructure={0};

61. I2C_InitTypeDef I2C_InitTSturcture={0};

62.

63. RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC |

RCC_APB2Periph_AFIO, ENABLE);

64. RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C1, ENABLE);

65.

66. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;

67. GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_OD;

68. GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

69. GPIO_Init(GPIOC, &GPIO_InitStructure);

70.

71. GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;

72. GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_OD;

73. GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

74. GPIO_Init(GPIOC, &GPIO_InitStructure);

75.

76. I2C_InitTSturcture.I2C_ClockSpeed = bound;

77. I2C_InitTSturcture.I2C_Mode = I2C_Mode_I2C;

78. I2C_InitTSturcture.I2C_DutyCycle = I2C_DutyCycle_16_9;

79. I2C_InitTSturcture.I2C_OwnAddress1 = address;

80. I2C_InitTSturcture.I2C_Ack = I2C_Ack_Enable;

81. I2C_InitTSturcture.I2C_AcknowledgedAddress =

I2C_AcknowledgedAddress_7bit;

82. I2C_Init(I2C1, &I2C_InitTSturcture);

83.

84. I2C_Cmd(I2C1, ENABLE);

85.

86. }

87.

88. /**

89. * @fn main

90. *

91. * @brief Main program.

92. *

93. * @return none

94. */

95. int main(void)

96. {

97. u8 i = 0;

98. u8 j = 0;

99. u8 p = 0;

100. SystemCoreClockUpdate();

101. Delay_Init();

102.

103. USART_Printf_Init(460800);

104.

105. printf("SystemClk:%d\r\n",SystemCoreClock);

106. printf("ChipID:%08x\r\n", DBGMCU_GetCHIPID());

107.

108. #if (I2C_MODE == HOST_MODE)

109. printf("IIC Host mode\r\n");

110. IIC_Init(80000, TxAdderss);

111.

112. for(j =0; j < 5; j++)

113. {

114. while(I2C_GetFlagStatus(I2C1, I2C_FLAG_BUSY) != RESET);

115.

116. I2C_GenerateSTART(I2C1, ENABLE);

117.

118. while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_MODE_SELECT)

);

119. I2C_Send7bitAddress(I2C1, 0x02, I2C_Direction_Transmitter);

120.

121. while(!I2C_CheckEvent(I2C1,

I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED));

122.

123. for(i=0; i< 6;i++)

124. {

125. if(I2C_GetFlagStatus(I2C1, I2C_FLAG_TXE) != RESET)

126. {

127. Delay_Ms(100);

128. I2C_SendData(I2C1, TxData[i]);

129. }

130. }

131.

132. while(!I2C_CheckEvent(I2C1,

I2C_EVENT_MASTER_BYTE_TRANSMITTED));

133. I2C_GenerateSTOP(I2C1, ENABLE);

134. Delay_Ms(1000);

135. }

136.

137. #elif (I2C_MODE == SLAVE_MODE)

138. printf("IIC Slave mode\r\n");

139. IIC_Init(80000, RXAdderss);

140.

141. for(p =0; p < 5; p++)

142. {

143.

144. i = 0;

145. while(!I2C_CheckEvent(I2C1,

I2C_EVENT_SLAVE_RECEIVER_ADDRESS_MATCHED));

146. while(i < 6)

147. {

148. if(I2C_GetFlagStatus(I2C1, I2C_FLAG_RXNE) != RESET)

149. {

150. RxData[p][i] = I2C_ReceiveData(I2C1);

151. i++;

152. }

153. }

154. I2C1->CTLR1 &= I2C1->CTLR1;

155. }

156. printf("RxData:\r\n");

157. for(p=0; p<5; p++)

158. {

159. for(i = 0; i < 6; i++)

160. {

161. printf("%02x ", RxData[p][i]);

162. }

163. printf("\r\n ");

164. }

165.

166.

167. #endif

168.

169. while(1);

170. }

6.4 Case Study for I2C Communication with Sensor:

Go to the File name as I2C Case Study in the same folder.

