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Embedded Systems



Getting Started with Embedded Systems

What is an Embedded system ?
Embedded systems are computing devices that are designed for specific tasks or functions within a 
larger system. They are embedded as part of a complete device, often with real-time computing 
constraints and limited resources.

Examples of Embedded Systems in everyday life ?
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Applications of Embedded Systems



Types of Embedded Systems

 Real Time
 Stand alone
 Networked
 Mobile

Based on Performance 
of Microcontroller
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Microprocessors and Microcontrollers

Microprocessor:
A central processing unit (CPU) on a single integrated circuit 
(IC) designed to perform general-purpose computation.

Key Characteristics: High processing power, requires external 
components for I/O, memory, and storage.

Examples: Intel Core, AMD Ryzen

Microcontrollers: 

An integrated circuit designed to perform specific control 
functions, containing a CPU, memory, and I/O peripherals on a 
single chip. 

Key Characteristics: Compact, low power, designed for 
specific tasks. 

Examples: Arduino (ATmega328), PIC (Microchip 
PIC16F877A)

       Key Differences
• Architecture:

• Microprocessors: CPU only, needs external components.
• Microcontrollers: CPU, memory, I/O peripherals 

integrated.
• Usage:

• Microprocessors: General-purpose computing, PCs, 
servers.

• Microcontrollers: Embedded systems, appliances, 
automotive.

• Power Consumption:
• Microprocessors: Higher power consumption.
• Microcontrollers: Lower power consumption.

• Complexity and Cost:
• Microprocessors: More complex, higher cost.
• Microcontrollers: Simpler, cost-effective for specific 

tasks.



Major Units in Computer Architecture
    Memory Management Unit (MMU)
        Purpose: Translates virtual addresses to physical addresses, handles memory protection, and manages virtual 
memory.
        Integration: Essential for supporting sophisticated memory management required by modern operating systems.
    Bus System
        Purpose: Facilitates communication between the CPU, memory, and peripherals.
        Components:
            Address Bus: Carries memory addresses.
            Data Bus: Transfers data.
            Control Bus: Sends control signals.
        Integration: Crucial for ensuring all parts of the computer system can communicate effectively.
    Input/Output (I/O) System
        Purpose: Manages data flow between the CPU and external devices.
        Components:
            I/O Controllers: Interfaces that manage the interaction between the system and peripheral devices.
            I/O Ports: Connection points for external devices.
        Integration: Often considered part of the bus system, as it involves communication pathways.
    System Software and Firmware
        BIOS/UEFI: Initializes hardware and provides a runtime environment for the operating system.
        Operating System: Manages hardware resources and provides services for application software.
        Firmware: Low-level software embedded in hardware to control device-specific functions.
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Microprocessors and Microcontrollers

Applications of Microprocessors

• Personal Computers 

• Servers and Workstations 

• Gaming Consoles 

• Smartphones and Tablets 

• High-performance computing systems

Applications of Microcontrollers
 Home Appliances (Microwaves, Washing Machines)
 Automotive Systems (Engine Control Units, Airbags)
 Consumer Electronics (Remote Controls, Toys)
 Industrial Automation (Robotic Controls, Sensors)
 IoT Devices (Smart Home Devices, Wearables)

Architecture Comparison

Key Components: ALU, Control Unit, Registers, Memory 
(RAM/ROM), I/O Ports, Timers 

Development Tools 

• Microprocessors: Compilers, Debuggers, IDEs (e.g., GCC, Visual 
Studio) 

• Microcontrollers: Integrated Development Environments (IDEs), 
Simulators, Debuggers (e.g., MPLAB, Keil uVision, Arduino IDE) 

Trends and Future Directions

Increasing Integration and Miniaturization AI and Machine Learning 
Integration IoT and Edge Computing Low Power and Energy-Efficient 
Designs
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Embedded System Key Components

 Processor 
 ISA
 Internal Bus
 Memory Unit
 Power
 Scheduling 
 Input / Output
 DMA



Processor
 RISC (Reduced Instruction Set Computing):
 Common ISAs include ARM and RISC-V.
 Simplified instructions for efficient execution and 

low power consumption.



Internal Bus: System on Chip (SoC)
 Integrated Components:
 Combines CPU, memory, I/O ports, and other peripherals on a 

single chip.
 Reduces physical space and power consumption.
 Peripheral Integration:
 Includes components such as ADCs, DACs, timers, PWM 

controllers, and communication interfaces (UART, SPI, I2C, etc.).



Memory Unit
 On-Chip Memory:
 Typically includes SRAM and ROM/Flash memory.
 Fast access times for real-time performance.
 External Memory Interfaces:
 Support for connecting to external memory modules 

like DRAM or NOR/NAND Flash.



    SRAM (Static RAM)
        Purpose: Temporary storage for variables and data during execution.
        Characteristics: Volatile, fast access.
        Usage: Stores variables, stack, and temporary data.

    EEPROM
        Purpose: Stores data that must persist across power cycles.
        Characteristics: Non-volatile, byte-addressable.
        Usage: Saves user settings and calibration data.

   Flash Memory (Program Memory)
        Purpose: Stores the firmware or program code.
        Characteristics: Non-volatile, reprogrammable.
        Usage: Holds the application code and bootloader.



Scheduling
 Real-Time Operating System (RTOS) Support:
 Features for deterministic execution and low-latency interrupts.
 Dedicated Timers and Counters:
 Hardware support for precise timing operations.
 Interrupt Handling:
 Fast and efficient interrupt processing capabilities.



Power Consumption
 Power Management Features:
 Multiple power modes (active, idle, sleep, deep sleep).
 Dynamic voltage and frequency scaling (DVFS).
 Efficient Instruction Execution:
Instructions optimized for minimal power use per operation.



I/O and Communication Interfaces
 Integrated Communication Peripherals:
 Support for serial communication protocols like 

UART, SPI, I2C, CAN, and USB.
 GPIO (General-Purpose Input/Output) Pins:
 Configurable pins for direct hardware interfacing 

and control.



External Buses Low Performance
 Increasing demand for high-speed data transfer rates
- Growing need for low latency and high throughput
- Scalability and flexibility requirements
- Advancements in technology and cost reductions
 UART (Universal Asynchronous Receiver-Transmitter)

 - Theory: UART is a serial communication protocol that uses asynchronous transmission, meaning that data is transmitted 
one bit at a time, without a clock signal.

  Pros:
 Simple and easy to implement
 Low power consumption
 Widely used in serial communication applications

 Cons:
 Limited data transfer rate (typically up to 115.2 kbps)
 No built-in error detection or correction
 Not suitable for high-speed or real-time applications 



SPI (Serial Peripheral Interface)
 SPI is a serial communication protocol that 
uses synchronous transmission, meaning that 
data is transmitted with a clock signal.

- Pros:

 - Full-duplex communication (simultaneous 
read and write)

 - High data transfer rates (up to 100 Mbps or 
more)

 - Simple and easy to implement

- Cons:

 - Requires four wires (MOSI, MISO, SCK, SS)

 - No built-in error detection or correction

 - Can be prone to noise and interference 
issues

I2C (Inter-Integrated Circuit)
 - Theory: I2C is a serial communication protocol 
that uses synchronous transmission, meaning 
that data is transmitted with a clock signal.

- Pros:

 - Multi-master, multi-slave communication

 - Built-in error detection and correction 
(ACK/NAK protocol)

 - Widely used in microcontroller and sensor 
applications

- Cons:

 - Limited data transfer rate (up to 400 kbps in 
standard mode, 3.4 Mbps in fast mode)

 - More complex than UART, requiring more pins 
and logic

 - Can be prone to noise and interference issues



Direct Memory Access (DMA) in Microcontrollers

Offload CPU:
        DMA allows the CPU to delegate data transfer tasks to the DMA controller, freeing 
up the CPU to perform other processing tasks.

Efficient Data Transfer:
        DMA enables high-speed data transfers directly between memory and peripherals 
without CPU intervention for each data byte or word, improving overall system efficiency.

Extended Address Space:
        DMA can handle block transfers using a single address setup, efficiently moving 
large amounts of data and effectively increasing the addressable data space.
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Memory Mapping
 Memory mapping is a crucial aspect of System on Chip (SoC) architecture. It refers to the way different 

components of the SoC are allocated addresses in the memory space. This mapping allows the CPU and 
other components to access and interact with various parts of the system's memory and peripherals.

 Key Aspects of Memory Mapping in SoCs. 
 Bus System
 Address Space Allocation
 Memory Regions
 Memory Mapping Techniques:
 Memory Map Tables
 Access Mechanisms
 Virtual Memory Mapping
 Address Decoding:

  Example of Memory Mapping in an SoC
 0x0000_0000 - 0x1FFF_FFFF: RAM (1 GB of addressable RAM)
 0x2000_0000 - 0x3FFF_FFFF: ROM or Flash memory
 0x4000_0000 - 0x5FFF_FFFF: Peripheral registers (e.g., GPIO, UART)
 0x6000_0000 - 0x7FFF_FFFF: External memory or memory-mapped I/O space





Bus System Components
  Address Bus: Carries address information from the CPU to memory and peripherals. The 

address bus width determines the range of addresses that can be used in memory mapping.
  Data Bus: Transfers data between components based on the address specified on the 

address bus.
  Control Bus: Carries control signals that manage the read and write operations and other 

control functions.
 Functions:

 Memory Map Configuration
 Interconnects and Buses 
 Address Decoding
 Memory-Mapped I/O

Example:

On-Chip Memory and Peripheral Mapping: Within the bus system, the memory map determines the layout of on-chip 
memory, peripheral registers, and I/O devices. The bus system ensures that the CPU and other components access 
the correct addresses based on this map.



Address Map/Space Allocation
 Memory Address Space: Defines the range of addresses 

used to access different types of memory, including RAM, 
ROM, and external memory.

 Peripheral Address Space: Allocates addresses for 
various peripherals and I/O devices.



Memory Regions

 Boot Memory: Often used to store the bootloader or initial 
firmware.

 Code Memory: Stores executable code and program instructions.
 Data Memory: Used for storing variables, stack, and heap data.
 Peripheral Registers: Memory-mapped addresses used to control 

and interact with peripheral devices (e.g., timers, UARTs, GPIOs).



Memory Mapping Techniques:
 Flat Memory Model: All memory 

and peripherals are mapped 
into a single, linear address 
space.

 Segmented Memory Model: 
Memory and peripherals are 
divided into segments or blocks, 
each with a specific address 
range.



Memory Map Tables and Access Mechanisms
 Memory Map Table: A detailed table that outlines the 

starting address, size, and type of each memory region 
and peripheral.

 Memory-Mapped I/O: Peripherals are accessed by 
reading from or writing to specific memory addresses.

 Access Mechanism:
 Linker Script: Define how different code and data 

sections are placed in memory.
 Direct Memory Access (DMA): Allows peripherals to 

directly access memory without CPU intervention, 
reducing latency and improving performance.



Virtual Memory Mapping
 Virtual Address Space: Some SoCs use virtual memory systems to abstract physical memory 

addresses, providing flexibility in memory management.
 Virtual Address: It is an address of a program's memory space.
 Page Table: The table contains mappings from virtual addresses to physical addresses. Each entry in the 

page table corresponds to a "page" of memory.
 Page Size: Memory is divided into fixed-size pages, typically ranging from 2 KB to 16 KB (though sizes like 

4 KB or 8 KB are common). The virtual address is split into two parts:
 Page Number: Identifies the page within the virtual address space.
 Offset: Identifies the specific location within the page.

 Translation: When a virtual address is used, the page number is looked up in the page table to find the 
corresponding physical page. The offset is then added to this physical page to get the final physical address.

 Physical Address: The final physical address points to the exact location in the system's memory (RAM) 
where the data is stored.
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Embedded System Clock Tree 
 It is responsible for distributing clock signals throughout the system. It ensures 

that all components receive accurate and synchronized timing signals necessary 
for proper operation. Here's a detailed look at the clock tree and its role in 
embedded systems:

 Purpose of the Clock Tree:
 Timing Distribution: The clock tree distributes clock signals from a central 

oscillator or clock source to various components and subsystems within the 
embedded system.

 Synchronization: Ensures that different parts of the system operate in sync, 
which is crucial for reliable and predictable system performance.



 Components of a Clock Tree:
 Clock Source: The primary oscillator or clock generator that provides the initial clock 

signal. 
  Clock Distributors: Distributes the clock to various parts of the system. This may include 

clock buffers, drivers, and multiplexers.
 Clock Dividers: Reduce the frequency of the clock signal to provide lower frequency 

clocks for different subsystems.
 Clock Multipliers: Increase the frequency of the clock signal if higher frequencies are 

required for certain components.
 Phase-Locked Loops (PLLs) and Delay-Locked Loops (DLLs): Used to generate stable, 

high-frequency clock signals from a lower-frequency reference clock, or to align the phase 
of clocks.

 Clock Gating: Mechanism to enable or disable the clock signal to specific parts of the 
system to save power when those parts are not in use.
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 Range of Applications



Introduction to Embedded C Programming

Embedded C
 Embedded C and standard C (often just called "C") 

are both programming languages used to write 
software, but they differ in their target environments, 
constraints, and some aspects of functionality.

 Embedded C can be considered as the subset of C 
language. It uses same core syntax as C.

 Embedded C programs need cross-compliers to 
compile and generate HEX code

 Embedded C is designed for embedded system 
programming with specific constraints, hardware 
interaction requirements, and specialized 
development tools.



Introduction to Embedded C Programming

A structural and programming language used by 
developers to create desktop-based applications

Target Environment
An extension of C primarily used to develop 
microcontroller based applications.

Typically used on systems with more resources.
Memory Constraint

Often used in environments with limited resources 
(memory, processing power).

Hardware interactions are managed by operating system 
or libraries, unless used in system-level programming.

Hardware Interaction
Interacts directly with hardware components, such as 
registers, I/O ports, and peripheral devices.

Uses standard libraries provided by the C standard 
library (e.g., stdio.h, stdlib.h) and other platform-specific 
or third-party libraries.

Libraries and Extensions
Uses specialized libraries and extensions for embedded 
systems (e.g., specific APIs for handling hardware 
interrupts, timers, and serial communication).

VS



Introduction to Embedded C Programming

Typically uses general-purpose IDEs (e.g., Visual Studio, 
Eclipse) and compilers (e.g., GCC, Clang).

Development Tools
Specific Integrated Development Environments (IDEs), 
compilers, and debuggers designed for embedded system 
development (e.g., Keil, IAR, MPLAB).

It can be used in real-time applications, but it is not 
inherently designed for real-time constraints and may 
rely on external real-time extensions or operating 
systems.

Real-Time Constraint
Often used in real-time systems where meeting timing 
constraints is crucial. It may include real-time operating 
systems (RTOS) or bare-metal programming.

Code is generally more portable across different 
platforms, adhering to the C standard.

Code Portability
Code is often less portable due to hardware-specific 
dependencies and optimizations. Porting code between 
different embedded platforms can be challenging.

VS



 Target Hardware Architecture:
 Processor and Specifications:
 Program Memory and Data Memory Size:
 Peripherals and Components

 Memory Mapping
 Software Development 

 GCC Compiler: Compiler: riscv32-unknown-elf-gcc or riscv64-unknown-elf-gcc.
 Debugger: GDB with RISC-V support.
 ELF Loader: OpenOCD or RISC-V Proxy Kernel.

Stress Checking and Profiling Tools for RISC-V:
 RISC-V Performance Monitor or Perf.



Requirements: Basic and Complex



Embedded System Schematic
and Memory Mapping



SW Development Environment
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Compiler Options
 riscv32-unknown-elf-gcc //

-march=rv32imac          // Architecture and ISA Extensions:
-mabi=ilp32                   // ABI (Application Binary Interface: Int, long, pointer):
-O2                     // Optimization Levels:
-mtune=sifive-e31            // Code Genartion for specific RISCV core
-g                   // Debugging and Profiling -pg
 mhard-float              // Floating Point Options: Hard/Soft Floting point:

 -T linker_script.ld            // -T: Specify a linker script.
-I/path/to/include             //  Include Paths and Libraries
-L/path/to/li             // 
-o output.elf              // Output file
source.c               // source file
-lm                    //  -lm (math library)

 -funroll-loops                   // Loop Unrolling option



Define Memory Address



Embedded System Programming and Memory Layout

 Understanding C memory layout is crucial for debugging, optimizing 
performance, security and interfacing with low-level systems.

  𝐓𝐞𝐱𝐭 ( ) :𝐂𝐨𝐝𝐞 𝐒𝐞𝐠𝐦𝐞𝐧𝐭
  𝐃𝐚𝐭𝐚 𝐒𝐞𝐠𝐦𝐞𝐧𝐭:
  𝐁𝐒𝐒 𝐒𝐞𝐠𝐦𝐞𝐧𝐭:
  𝐇𝐞𝐚𝐩 𝐒𝐞𝐠𝐦𝐞𝐧𝐭:
  𝐒𝐭𝐚𝐜𝐤 𝐒𝐞𝐠𝐦𝐞𝐧𝐭:



  𝐓𝐞𝐱𝐭 ( ),  and BSS :𝐂𝐨𝐝𝐞 𝐃𝐚𝐭𝐚 𝐒𝐞𝐠𝐦𝐞𝐧𝐭
 The text segment contains the executable code of the program. It is read-only and holds the instructions 

for the program.
 The data segment contains initialized global and static variables. In the example code, global_data is an 

initialized global variable with value 10.
 The BSS (Block Started by Symbol) segment contains uninitialized global and static variables. The BSS 

segment is set to zero during program startup. In the example code, global_bss variable will be added to 
the bss section by linker. 

 The Text, Data, and BSS segments collectively form the static part of the program that contains fixed-
sized instructions and data that persists throughout its execution. These should be kept in a non-volatile 
memory to ensure successful execution of code following a power cycle.

 You can use the size utility that comes with the compiler to get the size of the executable. Below is the 
output for the example code:
---------------------------------------------------------------------------

  text     data    bss       dec     hex      filename

  1585   600     8        2193    891      main.out



Heap and Stack Segments
  𝐇𝐞𝐚𝐩 𝐒𝐞𝐠𝐦𝐞𝐧𝐭:
 The heap segment is used for dynamic memory allocation during the program's runtime. In the 

example, we allocate memory for an integer using malloc(), and heap_var points to the newly 
allocated memory location.

  It's important to free the allocated memory after it is no longer needed.
 Over time, repeated memory allocation without freeing memory can cause the program's memory 

usage to grow unnecessarily leading to poor performance and runtime allocation failures.

  𝐒𝐭𝐚𝐜𝐤 𝐒𝐞𝐠𝐦𝐞𝐧𝐭:
 The stack segment is used for managing function calls, local variables, and function call frames. 

In the example, stack_var is a local variable that will be allotted on the stack during the execution 
of the main() function.

 The stack and heap memory share the dynamic memory area of the program. The stack typically 
starts from the end address of the memory and grows downward, while the heap starts from the 
end of the BSS segment.





Steps: Code Compilation to Execution
 riscv32-unknown-elf-gcc -march=rv32i -S -o riscv.s ./code.c
 riscv32-unknown-elf-as -march=rv32i -S -o riscv.o ./riscv.s 
 riscv32-unknown-elf-as -march=rv32i -o riscv.o ./riscv.s 
 riscv32-unknown-elf-ld -o riscv ./riscv.o 
 riscv32-unknown-elf-objcopy -O binary --only-section=.text riscv instr.mem
 riscv32-unknown-elf-objcopy -O binary --only-section=.data riscv data.mem
 riscv32-unknown-elf-objdump -D -b binary -m riscv:rv32i instr.mem



Debugging
 # Compile with debugging information
 riscv64-unknown-elf-gcc -march=rv64gc -mabi=lp64d -g -o my_program 

./for_loop.c

# Start GDB and load program
 riscv64-unknown-elf-gdb my_program
 # Run program in GDB
 (gdb) target sim

 (gdb) break linenumber
 (gdb) print variable_name



Profiling
 # Compile for performance analysis with perf
 riscv32-unknown-elf-gcc -march=rv32i -o my_program ./code.c
 # Run program with QEMU and collect profiling data
 qemu-riscv32 -cpu rv32, my_program -perf my_program
 # Analyze profiling data with perf
 // Not yet configured in cluster



Stress Testing
 riscv32-unknown-elf-gcc -march=rv32i -o stress-ng stress-ng.c
 # Run stress tests with stress-ng
 qemu-riscv32 -L /path/to/riscv/rootfs ./stress-ng --cpu 4 --io 2 --vm 2 --vm-

bytes 128M --timeout 60s
 Custom Stress Checking 
 riscv32-unknown-elf-gcc -march=rv32i -o stress_test ./stress_test.c
 # Run custom stress test program
 qemu-riscv32 ./stress_test



Performance Analysis
 riscv32-unknown-elf-gcc -march=rv32i -o my_program ./code.c
 qemu-riscv32 -L /path/to/riscv/rootfs valgrind --

tool=cachegrind ./my_program
 # Run program with QEMU for performance analysis
 qemu-riscv32 -d in_asm,cpu ./my_program > qemu_log.txt
 # Analyze QEMU log
 grep -E 'IN:|CPU:|Cycle:' qemu_log.txt



Testing Spike
/opt/riscv-gnu32/bin/spike --isa=RV32IMAC -d /opt/riscv/riscv32-unknown-elf/bin/pk ./heap32
until reg 0 pc 0x1000  # Stop execution when program counter of core 0 reaches 0x1000
mem 0 0x80000000  # View memory content at address 0x80000000 for core 0
freg 0 f0  # Display floating-point register f0 for core 0
run 1000  # Resume execution for 1000 instructions
reg 0  # View all registers for core 0
pc 0    # View the program counter of core 0
until pc 0 0x1000  # Stop execution when PC of core 0 reaches address 0x1000
while reg 0 sp 0x80000000  # Continue running while stack pointer (sp) of core 0 is 0x80000000
dump 0x80000000 0x80001000  # Dump memory from address 0x80000000 to 0x80001000
quit
mtime
mtimecmp 0



QEMU Debuging
 qemu-system-riscv32 -gdb tcp::1234 -S -kernel ./hello32.o
 riscv32-unknown-elf-gdb ./hello32.o #Sperate window open
 Debug Commands
 (gdb) target remote :1234   # Connect to the QEMU GDB server
(gdb) load                  # Load the binary into QEMU
(gdb) b main                # Set a breakpoint at the main function
(gdb) c                     # Continue execution until the breakpoint is hit
(gdb) info reg              # Display registers
(gdb) step                  # Step through code line by line
(gdb) next                  # Step over functions
(gdb) continue              # Continue execution until the next breakpoint
(gdb) quit                  # Exit GDB



Profiling QEMU
 qemu-system-riscv32 -d exec,int -kernel ./hello32.o
 perf record -e cycles -a -- qemu-system-riscv32 -kernel 

./hello32.o
 perf report



Hands-on Embedded C for RISCV
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