Architectural Insights and Programming
Techniques for Embedded Systems

by: Tassadaq Hussain
Director Centre for Al and BigData
Professor Department of Electrical Engineering
Namal University Mianwali

Collaborations:
Barcelona Supercomputing Center, Spain
European Network on High Performance and Embedded Architecture and Compilation
Pakistan Supercomputing Center

Contents

Overview of Embedded Systems and their Application
Introduction to Micro-controller and Microprocessors
Embedded System Architectures

Memory Mapping and Bus Architecture

Embedded System Clock Tree

Embedded processor Instruction Set Architecture

7p)
=
&
<
9p)
>
9p
©
&
5=
S
&
=
=
[

010101

Getting Started with Embedded Systems

What is an Embedded system ?

Embedded systems are computing devices that are designed for specific tasks or functions within a
larger system. They are embedded as part of a complete device, often with real-time computing
constraints and limited resources.

Examples of Embedded Systems in everyday life ?

|
o

Real-Time Operation
Dedicated Functionality

Resource Constraints:

Reliability and Stability

-

.’@_

Characteristics

of Embedded
Real-Time Operating
Systems (RTOS
I/0 Interaction

Applications of Embedded Systems

Manufacturing Domestic Audio/Video
Equipment Appliances Equipment

Sensor Integration

Types of Embedded Systems

Based on Application J Based on Performance i Based on Complexity Based on Functional
of Microcontroller Requirements

Control Systems
Monitoring Systems
Data Acquisition
Systems

" Hard-Real Time
" Soft Real Time

Small Scale
" Large Scale
Sophisticated

Real Time
Stand alone
Networked
Mobile

4

EMBEDDED WORLD IS RUNNING

Now 30 billion
embedded 70% of all loT devices
systems are medical contain
in operation devices use embedded
worldwide | embedded systems

systems

Basic Embedded Architecture

Hardware

._Lt“lllljrll_

Peripherals =[l]=- Microprocessor

[_cr_]'I|IP]-L

FEES Embedded 0S X\ Application
:Q

Software

Contents

Overview of Embedded Systems and their Application
Introduction to Micro-controller and Microprocessors
Embedded System Architectures

Memory Mapping and Bus Architecture
Embedded System Clock Tree

Embedded processor Instruction Set Architecture

Microprocessors and Microcontrollers e

Microprocessor:

A central processing unit (CPU) on a single integrated circuit
(IC) designed to perform general-purpose computation.

Key Characteristics: High processing power, requires external
components for I/O, memory, and storage.

Examples: Intel Core, AMD Ryzen

Microcontrollers:

An integrated circuit designed to perform specific control
functions, containing a CPU, memory, and I/O peripherals on a
single chip.

Key Characteristics: Compact, low power, designed for
specific tasks.

Examples: Arduino (ATmega328), PIC (Microchip
PIC16F877A)

e | ASIC
R -
,j%%‘r © Hardware - FPGA
-DsEy -
== S B e
- =
Prngnmr::bli i WP
e
cer = Application —— DSP
Key Differences Specific
* Architecture: - Other

* Microprocessors: CPU only, needs external components.

* Microcontrollers: CPU, memory, I/O peripherals
integrated.

Usage:

* Microprocessors: General-purpose computing, PCs,
servers.

* Microcontrollers: Embedded systems, appliances,
automotive.

Power Consumption:
* Microprocessors: Higher power consumption.
* Microcontrollers: Lower power consumption.
Complexity and Cost:
* Microprocessors: More complex, higher cost.

* Microcontrollers: Simpler, cost-effective for specific
tasks.

Major Units in Computer Architecture

Memory Management Unit (MMU)
Purpose: Translates virtual addresses to physical addresses, handles memory protection, and manages virtual
memory.
Integration: Essential for supporting sophisticated memory management required by modern operating systems.
Bus System
Purpose: Facilitates communication between the CPU, memory, and peripherals.
Components:
Address Bus: Carries memory addresses.
Data Bus: Transfers data.
Control Bus: Sends control signals.
Integration: Crucial for ensuring all parts of the computer system can communicate effectively.
Input/Output (1/0) System
Purpose: Manages data flow between the CPU and external devices.
Components:
I/O Controllers: Interfaces that manage the interaction between the system and peripheral devices.
I/O Ports: Connection points for external devices.
Integration: Often considered part of the bus system, as it involves communication pathways.
System Software and Firmware
BIOS/UEFI: Initializes hardware and provides a runtime environment for the operating system.
Operating System: Manages hardware resources and provides services for application software.
Firmware: Low-level software embedded in hardware to control device-specific functions.

® EEPROM
SPI
' . . ' ' ' ' ' UART Timers

Serial Communication
MICROPROCESSOR

Ext. Oscillator
RC Oscillator
PLL

ALU

Control unit Program

Memory
WD

Register Array ADC Channels

Interrupts

GPIO Ports

DMA Controller

Microprocessors and Microcontrollers

Applications of Microprocessors

Personal Computers
Servers and Workstations
Gaming Consoles
Smartphones and Tablets

High-performance computing systems

Applications of Microcontrollers

Home Appliances (Microwaves, Washing Machines)
Automotive Systems (Engine Control Units, Airbags)
Consumer Electronics (Remote Controls, Toys)
Industrial Automation (Robotic Controls, Sensors)

IoT Devices (Smart Home Devices, Wearables)

Architecture Comparison

Key Components: ALU, Control Unit, Registers, Memory
(RAM/ROM), I/O Ports, Timers

Development Tools

* Microprocessors: Compilers, Debuggers, IDEs (e.g., GCC, Visual
Studio)

* Microcontrollers: Integrated Development Environments (IDEs),
Simulators, Debuggers (e.g., MPLAB, Keil uVision, Arduino IDE)

Trends and Future Directions

Increasing Integration and Miniaturization Al and Machine Learning
Integration IoT and Edge Computing Low Power and Energy-Efficient
Designs

Contents

Overview of Embedded Systems and their Application
Introduction to Micro-controller and Microprocessors
Embedded System Architectures

Memory Mapping and Bus Architecture

Embedded System Clock Tree

Embedded processor Instruction Set Architecture

Microprocessor-Based Systems =
IN Tech House
Microcontroller + External Memory

EMBEDDED

SYSTEMS
TYPES Single Microcontroller/

Digital Signal Processor (DSP)

Complex System-on-Chip (SoC)

https://intechhouse.com/blog/embedded-systems-architecture/

pwM Analog Analog o S| —

IN ouT
A A
Timer/PWM ADC DAC

>
Memory UART ;’;
Instructi
Instruction register . n s ruc I_ﬂ!‘_ .- Flash Memory
Instruction 0
Controller Instruction 1 SRAM

| Instruction 2 » SCK
" Instruction 3 SPI » MOSI
% MISO

—> Data channel — (< Data DBG TG
Input output | e : e y .
Data 0 interface i I > SCL
Data 1 & » SDA
CPU Data 2 Processor
Data 3 4 > D-
> USB |PHY
44— D+
Clock
controller
CLK <P GPIO controller

A & & A & & 5 &

YyYYvYyVvyvYyVvYyY°VvYYyY

GPIO pins

HPC Embedded Systems

Variable PLL DSP engine 'm' sty
External
Protocol el
interface
Fixed PLL Master Processor L2 Cache
On chip
High performance bus bridge Scratch pad Eminmmalhost e?t:‘l:e
memaory

Tensilica®
Embedded Control
Embedded DSP
Communications
Vision / Imaging
Audio / Voice / Speech

Customer Optimized

Display Systems

SD/SDIO/
eMMC

Applications Processor

VT Monitors

PLUOSC

Embedded System Key Components

* Processor

* ISA

* Internal Bus

* Memory Unit
* Power

* Scheduling

* Input / Output
* DMA

Processor

* RISC (Reduced Instruction Set Computing):
* Common ISAs include ARM and RISC-V.

* Simplified Instructions for efficient execution and
low power consumption.

Internal Bus: System on Chip (SoC)

* Integrated Components:

* Combines CPU, memory, I/O ports, and other peripherals on a
single chip.

* Reduces physical space and power consumption.
* Peripheral Integration:

* Includes components such as ADCs, DACs, timers, PWM
controllers, and communication interfaces (UART, SPI, 12C, etc.).

Memory Unit

* On-Chip Memory:

* Typically includes SRAM and ROM/Flash memory.
* Fast access times for real-time performance.

* External Memory Interfaces:

* Support for connecting to external memory modules
like DRAM or NOR/NAND Flash.

SRAM (Static RAM)
Purpose: Temporary storage for variables and data during execution.
Characteristics: Volatile, fast access.

Usage: Stores variables, stack, and temporary data.

EEPROM
Purpose: Stores data that must persist across power cycles.
Characteristics: Non-volatile, byte-addressable.
Usage: Saves user settings and calibration data.

Flash Memory (Program Memory)
Purpose: Stores the firmware or program code.
Characteristics: Non-volatile, reprogrammable.
Usage: Holds the application code and bootloader.

Scheduling

* Real-Time Operating System (RTOS) Support:

* Features for deterministic execution and low-latency interrupts.
* Dedicated Timers and Counters:

* Hardware support for precise timing operations.

* Interrupt Handling:

* Fast and efficient interrupt processing capabillities.

* Power Consumption

* Power Management Features:

* Multiple power modes (active, idle, sleep, deep sleep).

* Dynamic voltage and frequency scaling (DVFS).

* Efficient Instruction Execution:
Instructions optimized for minimal power use per operation.

/O and Communication Interfaces

* Integrated Communication Peripherals:

* Support for serial communication protocols like
UART, SPI, 12C, CAN, and USB.

* GPIO (General-Purpose Input/Output) Pins:

* Configurable pins for direct hardware interfacing
and control.

External Buses Low Performance

Increasing demand for high-speed data transfer rates
- Growing need for low latency and high throughput

- Scalability and flexibility requirements

- Advancements in technology and cost reductions

* UART (Universal Asynchronous Receiver-Transmitter)

} - Theory: UART is a serial communication protocol that uses asynchronous transmission, meaning that data is transmitted
one bit at a time, without a clock signal.

} Pros:
* Simple and easy to implement
* Low power consumption
* Widely used in serial communication applications
} Cons:
* Limited data transfer rate (typically up to 115.2 kbps)
* No built-in error detection or correction
* Not suitable for high-speed or real-time applications

SPI (Serial Peripheral Interface)

SPI is a serial communication protocol that
uses synchronous transmission, meaning that
data is transmitted with a clock signal.

- Pros:

- Full-duplex communication (simultaneous
read and write)

- High data transfer rates (up to 100 Mbps or
more)

- Simple and easy to implement

- Cons:

- Requires four wires (MOSI, MISO, SCK, SS)
- No built-in error detection or correction

- Can be prone to noise and interference
Issues

12C (Inter-Integrated Circuit)

- Theory: 12C is a serial communication protocol
that uses synchronous transmission, meaning
that data is transmitted with a clock signal.

- Pros:
- Multi-master, multi-slave communication

- Built-in error detection and correction
(ACK/NAK protocol)

- Widely used in microcontroller and sensor
applications

- Cons:

- Limited data transfer rate (up to 400 kbps in
standard mode, 3.4 Mbps in fast mode)

- More complex than UART, requiring more pins
and logic

- Can be prone to noise and interference issues

Direct Memory Access (DMA) in Microcontrollers

Offload CPU:
DMA allows the CPU to delegate data transfer tasks to the DMA controller, freeing
up the CPU to perform other processing tasks.

Efficient Data Transfer:
DMA enables high-speed data transfers directly between memory and peripherals
without CPU intervention for each data byte or word, improving overall system efficiency.

Extended Address Space:
DMA can handle block transfers using a single address setup, efficiently moving
large amounts of data and effectively increasing the addressable data space.

Contents

Overview of Embedded Systems and their Application
Introduction to Micro-controller and Microprocessors
Embedded System Architectures

Memory Mapping and Bus Architecture

Embedded System Clock Tree

Embedded processor Instruction Set Architecture

Memory Mapping

* Memory mapping is a crucial aspect of System on Chip (SoC) architecture. It refers to the way different
components of the SoC are allocated addresses in the memory space. This mapping allows the CPU and
other components to access and interact with various parts of the system's memory and peripherals.

* Key Aspects of Memory Mapping in SoCs.
> Bus System
> Address Space Allocation
> Memory Regions
> Memory Mapping Techniques:
> Memory Map Tables
> Access Mechanisms
> Virtual Memory Mapping
> Address Decoding:

* Example of Memory Mapping in an SoC
> 0x0000_0000 - 0x1FFF_FFFF: RAM (1 GB of addressable RAM)
> 0x2000_0000 - Ox3FFF_FFFF: ROM or Flash memory
> 0x4000_0000 - Ox5FFF_FFFF: Peripheral registers (e.g., GPIO, UART)
> 0x6000_0000 - Ox7FFF_FFFF: External memory or memory-mapped I/O space

Ox1FFF FFFF

Ox1FFF F840
Ox1FFF FS0O0O
Ox1FFF FFCO

Ox1FFF F780

Ox1FFF FOOO

O=x0s800 4000

Ox0300 0000

O OO0 OO00O0

Reserved

Option Bytes

wendor Bytes

Reserved

Systerm FLASH
(BOOT_1920B)

Reserved

Code FLASH
16K B

Aldliased to Flash or
Systerm mermory
depending on
softwvware
configuration

OxFFFF FFFFF

O=<xEOQL1LO OOO0O

O=<xEQOQQO OO0O00O

O3 000 QOO0

Ox2000 O300
Ox2000 0000

Ox0000 OOO0O

Rese rved

Core Private
Peripherals

Reserved

Peripherals

Reserved

2KB SRAMN

FLASH

AG limear address space

Ox=xS0O05

O 002

O 4002

O 4002

O 3002

O 4002
OO0 2

O 3002
O 4002

O30 01
O 4001
O 4001
O 3001

O30 01
O 3001
O30 1L

O 4001
O 3001

O <3400 1
O 3001
O 3001

O 3001

OxA4001

(e dulele e

O 3000

O 3000
O 3000

O 3000
< A000

OcO OO0y

O 3000
< 2000

O Oy

SC OO0

3800

24 00

2000

1300
1000

O 00
OO0 OO

Z2C 00
2800
24 00
2000

200
2800
22 00

1800
13 00

1000
OC OO
08 00

O OOy

oD 00

F OO0

Fpele e

S5 00
54 00

24900
2000

200

O3 OOy
OO0 OO

Reserved

Reserved

EXTEMND

Reserrved

Flash Interface

Reserrved

RCC

Reserved

D P1A

Reserved

UsSART

Reserved

SPI

TIMN L

Reserved

AaDC

Reserved

Port D»

Port C

Reserved

Port A

EXTI

A FIO

Reserrved

PWJiR

Reserved

12C

Reserved

W DG

W W DG

Rese rved

i 2Z

Bus System Components

* Address Bus: Carries address information from the CPU to memory and peripherals. The
address bus width determines the range of addresses that can be used in memory mapping.

* Data Bus: Transfers data between components based on the address specified on the
address bus.

* Control Bus: Carries control signals that manage the read and write operations and other
control functions.

* Functions:
} Memory Map Configuration
} Interconnects and Buses
} Address Decoding
} Memory-Mapped I/0
Example:

On-Chip Memory and Peripheral Mapping: Within the bus system, the memory map determines the layout of on-chip
memory, peripheral registers, and 1/O devices. The bus system ensures that the CPU and other components access
the correct addresses based on this map.

Address Map/Space Allocation

* Memory Address Space: Defines the range of addresses
used to access different types of memory, including RAM,
ROM, and external memory.

* Peripheral Address Space: Allocates addresses for
various peripherals and 1/O devices.

Memory Regions

* Boot Memory: Often used to store the bootloader or initial
firmware.

* Code Memory: Stores executable code and program instructions.
* Data Memory: Used for storing variables, stack, and heap data.

* Peripheral Registers: Memory-mapped addresses used to control
and interact with peripheral devices (e.g., timers, UARTs, GPIOs).

Memory Mapping Techniques:

* Flat Memory Model: All memory
and peripherals are mapped
Into a single, linear address
space.

* Segmented Memory Model:
Memory and peripherals are
divided into segments or blocks,
each with a specific address
range.

Loqgical

[1

Flat Model

Linear Address

Linear
Address
Space*

Segmented Model
]
Segments

Offset (effective address) m:-

] Address

e Space*

Address >€gment Selector -

[] -

Memory Map Tables and Access Mechanisms

Memory Map Table: A detailed table that outlines the
starting address, size, and type of each memory region
and peripheral.

Memory-Mapped I/O: Peripherals are accessed by
reading from or writing to specific memory addresses.

Access Mechanism:

> Linker Script: Define how different code and data
sections are placed in memory.

> Direct Memory Access (DMA): Allows peripherals to
directly access memory without CPU intervention,
reducing latency and improving performance.

0x0000_0000
0x4000_0000

0x407F_FFFE

0x8000_0000

0x2000_00FE

Qx0000_0000

0x4000_0000

0x407F_FFFE

Ox&000_0000

QxB000_00FE

Qx0000_0000

Qx4000_0000

0x407F_FFFS

0x8000_0000

Ox8000_00FE

SBCO
Local Addr Space

& MB SRAM

Register Spac
(DMA Engine)

SBCl
Local Addr Space

8IE Memory Space
16 MB

SIE Fegisters
S5DR Buffer

28 MBE SRAM

Begister Space
(DMA Engine)

SBCZ2
Local Addr Space

ICE Memory Space
32 KB
#4=1.} IFCs
Rezzul Fos

2 MB SRAM

Fegister Space
(DMA Engine)

0x0000_0000
Ox=REO00_0000

OxFRTF_FFF&
0 oo_oooo
0xPPFF_FFFC

Oxs5s500_0000

O0xSSTF_FFF&

DQo00_g000

Oxqo0l_0000

O=TTOO_0000

Virtual Memory Mapping

* Virtual Address Space: Some SoCs use virtual memory systems to abstract physical memory
addresses, providing flexibility in memory management.

* Virtual Address: It is an address of a program's memory space.

* Page Table: The table contains mappings from virtual addresses to physical addresses. Each entry in the
page table corresponds to a "page" of memory.

* Page Size: Memory is divided into fixed-size pages, typically ranging from 2 KB to 16 KB (though sizes like
4 KB or 8 KB are common). The virtual address is split into two parts:

> Page Number: Identifies the page within the virtual address space.

> Offset: Identifies the specific location within the page.

* Translation: When a virtual address is used, the page number is looked up in the page table to find the
corresponding physical page. The offset is then added to this physical page to get the final physical address.

* Physical Address: The final physical address points to the exact location in the system’'s memory (RAM)
where the data is stored.

Contents

Overview of Embedded Systems and their Application
Introduction to Micro-controller and Microprocessors
Embedded System Architectures

Memory Mapping and Bus Architecture

Embedded System Clock Tree

Embedded processor Instruction Set Architecture

Embedded System Clock Tree

* It is responsible for distributing clock signals throughout the system. It ensures
that all components receive accurate and synchronized timing signals necessary
for proper operation. Here's a detailed look at the clock tree and its role in
embedded systems:

* Purpose of the Clock Tree:

* Timing Distribution: The clock tree distributes clock signals from a central
oscillator or clock source to various components and subsystems within the
embedded system.

* Synchronization: Ensures that different parts of the system operate in sync,
which is crucial for reliable and predictable system performance.

* Components of a Clock Tree:

* Clock Source: The primary oscillator or clock generator that provides the initial clock
signal.

* Clock Distributors: Distributes the clock to various parts of the system. This may include
clock buffers, drivers, and multiplexers.

* Clock Dividers: Reduce the frequency of the clock signal to provide lower frequency
clocks for different subsystems.

* Clock Multipliers: Increase the frequency of the clock signal if higher frequencies are
required for certain components.

* Phase-Locked Loops (PLLs) and Delay-Locked Loops (DLLs): Used to generate stable,
high-frequency clock signals from a lower-frequency reference clock, or to align the phase
of clocks.

* Clock Gating: Mechanism to enable or disable the clock signal to specific parts of the
system to save power when those parts are not in use.

Contents

Overview of Embedded Systems and their Application
Introduction to Micro-controller and Microprocessors
Embedded System Architectures

Memory Mapping and Bus Architecture

Embedded System Clock Tree

Embedded System Programming

* Range of Applications

Nor_1- < Soft > Har_d
real time real time real time
Computer User Internet Cruise Tele- Flight Electronic

simulation interface video control communications control engine

Introduction to Embedded C Programming

Embedded C NN - w

" Embedded C and standard C (often just called "C")
are both programming languages used to write
software, but they differ in their target environments,
constraints, and some aspects of functionality.

" Embedded C can be considered as the subset of C
language. It uses same core syntax as C.

oo
om0
oo
om0
O
oo
oo
om0
om0
oo
oo
oo

" Embedded C programs need cross-compliers to
compile and generate HEX code

" Embedded C is designed for embedded system
programming with specific constraints, hardware
interaction requirements, and specialized
development tools.

Introduction to Embedded C Programming

VS

Target Environment

A structural and programming language used by An extension of C primarily used to develop
developers to create desktop-based applications microcontroller based applications.

Memory Constraint

Typically used on systems with more resources. Often used in environments with limited resources
(memory, processing power).

Hardware Interaction

Hardware interactions are managed by operating system Interacts directly with hardware components, such as
or libraries, unless used in system-level programming. registers, I/O ports, and peripheral devices.

Libraries and Extensions

Uses standard libraries provided by the C standard Uses specialized libraries and extensions for embedded
library (e.g., stdio.h, stdlib.h) and other platform-specific systems (e.g., specific APIs for handling hardware
or third-party libraries. interrupts, timers, and serial communication).

Introduction to Embedded C Programming

VS

Development Tools

Typically uses general-purpose IDEs (e.g., Visual Studio, Specific Integrated Development Environments (IDEs),
Eclipse) and compilers (e.g., GCC, Clang). compilers, and debuggers designed for embedded system
development (e.g., Keil, IAR, MPLAB).

Real-Time Constraint

It can be used in real-time applications, but it is not Often used in real-time systems where meeting timing
inherently designed for real-time constraints and may constraints is crucial. It may include real-time operating
rely on external real-time extensions or operating systems (RTOS) or bare-metal programming.
systems.

Code Portability
Code is generally more portable across different Code is often less portable due to hardware-specific
platforms, adhering to the C standard. dependencies and optimizations. Porting code between

different embedded platforms can be challenging.

* Target Hardware Architecture:
} Processor and Specifications:
} Program Memory and Data Memory Size:
b Peripherals and Components

* Memory Mapping
* Software Development

} GCC Compiler: Compiler: riscv32-unknown-elf-gcc or riscv64-unknown-elf-gcc.
3 Debugger: GDB with RISC-V support.

} ELF Loader: OpenOCD or RISC-V Proxy Kernel.
Stress Checking and Profiling Tools for RISC-V:

! RISC-V Performance Monitor or Perf.

Requirements: Basic and Complex

Criterion

Processor

Memory
Development cost
Production cost
Number of units
Power consumption
Lifetime

Reliability

Low

4- or 8-bit

< 64 KB

< $100,000

<510

< 100

> 10 mW/MIPS

Days, weeks, or months

May occasionally fail

0 i Network
perating Stack
e

Medium

16-bit

64 KB to 1 MB

$100,000 to $1,000,000
$10 to $1,000

100 to 10,000

1to 10 mW/MIPS

Years

Must work reliably

High

32- or 64-bit
>1MB

> $1,000,000
> $1,000

> 10,000

< 1 mW/MIPS
Decades

Must be fail-proof

Embedded System Schematic
and Memory Mapping

Unused

Flash Memory
(16 MB)

Unused

PXA255
Peripherals

Unused

SMSC Ethernet
Controller

Unused

SDRAM
(64 MB)

OxFFFFFFFF
0x51000000

0x50000000
0x44000000

0x40000000
0x0800030F

0x08000300

0x04000000

0x00000000

Net Pin
label number

D[O;IE]% ! 1(12---Reference designator
. Bus net.---» D+0 ; _

! D0=---Pinname A1
D1 6 D1 A2
b2 7y, A3
D3 8 D3 A
D4 W04y, AS
————{E?————%%— D5 A6
% S A7
Off-p(:;!ge connector D7 13 07 A3
. D8 14/, A9
_ D9 6] A10
D0 184, A
D11 19| oo A
D2 20|, A3
DB 2y, A4
S P AT
D5 Blpys A6
e A17
Net: A8
: Junction A19
; 4110 A20
CPU_RESET[s = RESET A21
P11 Az2
A23
R[> R 1216pig 1 n24
1<} X1 Blgpio_y A25

USB_INT[> 1321 6pio_3

10151 0/bcD0
VCC

RISI >—— 1021p1 1/R50
Ba] PXA255
R39 3R .

No connection
between two nets

Compoﬁent type

r—{) A[1..20]
42 Al
43 A2
44 A3
45 A4 J
48 A5
49 A6)
50 A7
51 A8 A
52 A9
53 A10]
54 A1
55 A12)
56 A13
57 A14 y
58 A15
59 A16)
61 A17
62 A18)
63 A19
65 A20
66
67
68 3
/0 Net label showing
72 connections
4
No connect ‘ PL1
A2 g3
_____:J LY
GND OUTPUT PORT

SW Development Environment

Editor Keil™ uVision®

Start

14

Source code

direction register

LDR R1, =GPIO_PORTD DIR_R
LDR RO, [R1]

ORR RO, RO, #OXOF

make PD3-0 output

STR RO, [R1]

1 Build Target (F7)

Object code

0x00000142 4912
0x00000144 6808
0x00000146 FO40000F
O0X0000014A 6008

A A

Addrless Dlata

Simulated Processor 1
Start Microcontroller
Debug
Session Memory
170
1311 "
A
I{?al Processor
Microcontroller
Download
M
@ Start cmory
Debug
Session /O
111 "

Compiler Options

* riscv32-unknown-elf-gcc //

-march=rv32imac // Architecture and ISA Extensions:

-mabi=ilp32 // ABI (Application Binary Interface: Int, long, pointer):

-0O2 /I Optimization Levels:

-mtune=sifive-e31 // Code Genartion for specific RISCV core

-0 // Debugging and Profiling -pg

mhard-float // Floating Point Options: Hard/Soft Floting point:
*-T linker_script.ld Il -T. Specify a linker script.

-I/path/to/include /I Include Paths and Libraries

-L/path/to/li /l

-0 output.elf // Output file

source.c // source file

-Im /I -Im (math library)

* -funroll-loops // Loop Unrolling option

Define Memory Address

/* Timer Registers */

#define
#define
#define
#define
#define
#define
#define

TIMER_0_MATCH_REG
TIMER 1 _MATCH REG
TIMER 2 MATCH REG
TIMER_3_MATCH_REG
TIMER_COUNT REG

TIMER STATUS REG

TIMER INT ENABLE REG

(

(*(
(*(
(*(
(*(
(*(
((

*
*

/* Timer Interrupt Enable Register Bit Descriptions */

#define
#define
#define
#define

TIMER 0 INTEN
TIMER_1_INTEN
TIMER 2 INTEN
TIMER 3 INTEN

(0x01)
(0x02)
(0x04)
(0x08)

/* Timer Status Register Bit Descriptions */

#define
#define
#define
#define

/* Interrupt Controller Registers */
#define INTERRUPT PENDING REG
#define INTERRUPT ENABLE REG

#define INTERRUPT_TYPE_REG

TIMER 0 MATCH
TIMER 1 MATCH
TIMER 2 MATCH
TIMER_3_MATCH

(0x01)
(0x02)
(0x04)
(0x08)

R

(

*((uint32_t volatile
(uint32 t volatile
(uint32 t volatile
(uint32_t volatile
(uint32_t volatile
(uint32 t volatile
(uint32 t volatile

*)0x40A00000))
*)0x40A00004))
*)0x40A00008))
*J0x40A0000C))
*)0x40A00010))
*)0x40A00014))
*)0x40A0001C))

((uint32 t volatile *)0x40D00000))
((uint32 t volatile *)0x40D00004))
(

(*((uint32_t volatile *)0x40D00008))

/* Interrupt Enable Register Bit Descriptions */

#define
#define
#define
#tdefine
#define
#define

GPIO 0 ENABLE
UART ENABLE

TIMER_O_ENABLE
TIMER 1 ENABLE
TIMER 2 ENABLE
TIMER_3_ENABLE

(0x00000100)
(0x00400000)
(0x04000000)
(0x08000000)
(0x10000000)
(0x20000000)

/* General Purpose I/0 (GPIO) Registers */

#define
#define
#define
#define
#define
#define
#define
ftdefine
#tdefine
#define
#define
#define
ftdefine
#define

GPIO 0 LEVEL REG
GPIO 1_LEVEL REG
GPIO 2 LEVEL REG
GPIO 0 DIRECTION REG
GPIO 1 DIRECTION REG
GPIO 2 DIRECTION REG
GPIO 0 SET REG
GPIO 1 SET REG
GPIO 2 SET REG

GPIO 0 CLEAR REG
GPIO 1 CLEAR REG
GPIO 2 CLEAR REG
GPIO 0 FUNC_LO REG
GPIO 0 FUNC_HI REG

(*((uint32_ t
(uint32 t
(uint32 t
(uint32 t
(uint32 t
(uint32 t
(uint32 t
(uint32 t
(uint32_ t
(uint32_ t
(uint32 t
(uint32 t
(uint32 t
(uint32 t

(*(
(*(
(*(
(*(
(*(
(*(
(*(
(*(
(*(
(*(
(*(
(*(
(*(

volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile

*)0x40E00000))
*)0x40E00004))
*)0x40E00008))
*)0x40E0000C))
*)0x40E00010))
*)0x40E00014))
*)0x40E00018))
*)0x40E0001C))
*)0x40E00020))
*)0x40E00024))
*)0x40E00028))
*)0x40E0002C))
*)0x40E00054))
*)0x40E00058))

Embedded System Programming and Memory Layout

* Understanding C memory layout is crucial for debugging, optimizing
performance, security and interfacing with low-level systems.

* Text (Code) Segment:
* Data Segment:
* BSS Segment:

High Address

‘‘‘‘‘‘‘‘‘‘

18 int main() {
. [] rls L / Local wvariable in the stack segment
eap Segment: | i
13 i)
14 / Dynamically allocated memory in the heap segment
15 i > var = (int*)malloc(sizeof(int));

uninitialised daka

* Stack Segment:

printf("Stack Variable: %d\n", stack_var);

Low Address

eeeeeeeeeeee

* Text (Code), Data and BSS Segment:

* The text segment contains the executable code of the program. It is read-only and holds the instructions
for the program.

* The data segment contains initialized global and static variables. In the example code, global data is an
Initialized global variable with value 10.

* The BSS (Block Started by Symbol) segment contains uninitialized global and static variables. The BSS
segment is set to zero during program startup. In the example code, global bss variable will be added to
the bss section by linker.

* The Text, Data, and BSS segments collectively form the static part of the program that contains fixed-
sized instructions and data that persists throughout its execution. These should be kept in a non-volatile
memory to ensure successful execution of code following a power cycle.

* You can use the size utility that comes with the compiler to get the size of the executable. Below is the
output for the example code:

* text data bss dec hex filename

* 1585 600 8 2193 891 main.out

Heap and Stack Segments

Heap Segment:

The heap segment is used for dynamic memory allocation during the program's runtime. In the
example, we allocate memory for an integer using malloc(), and heap_var points to the newly
allocated memory location.

It's important to free the allocated memory after it is no longer needed.

Over time, repeated memory allocation without freeing memory can cause the program's memory
usage to grow unnecessarily leading to poor performance and runtime allocation failures.

Stack Segment:

The stack segment is used for managing function calls, local variables, and function call frames.
In the example, stack var is a local variable that will be allotted on the stack during the execution
of the main() function.

The stack and heap memory share the dynamic memory area of the program. The stack typically
starts from the end address of the memory and grows downward, while the heap starts from the
end of the BSS segment.

HIGHER ADDRESS HIGHER ADDRESS #include<stdio.h>

— #include<malloc.h>
PED Commandline argument
UNMAP f— . . void FUNCTION 1();
& environment variables void FUNCTION 2();
STACK - main() S-tHCk frames ?f char s1[]="FIRMCODES"; //initialized read-write area of DATA segment
different functions int i; /funinitialized DATA segment
C1 o - - i =1; ffinitialized read-only are f DATA segment
— Stack Frames SlolEl L including its local const int x=1; / alized read-only area of DATA seg
a variables int main()
{
FUNCTION 2() static int TEMP=8; /funinitiglized DATA segment
ﬁ b char *p=(char*)malloc(sizeof(char)); //Heagp segment
= Dynamic Memory — malloc allocation FUNCTION 1(); //FUNCTION_1 stack frame
p
return &;
b
un-initialized DATA)
void FUNCTION_1()
segment {
Data Segmen’[int a; Sfinitialized in stack frame of FUNCTION 1
Initialized DATA FUNCTION 2(); //FUNCTION 2 stack frame
segment ¥
void FUNCTION_2()
Executable Code o D) A
int b; dfinitiaglized in stack frame of FUNCTION 2
b

LOWER ADDRESS LOWER ADDRESS

Steps: Code Compilation to Execution

riscv32-un
rscv32-un
rscv32-un
rscv32-un
rscv32-un
rscv32-un

riscv32-un

KNOWn-e
KNOWnN-e
KNOWn-e
KNOWnN-e
KNOWnN-e

KNOWnN-e

KNOWn-e

f-gcc -march=rv32i -S -o riscv.s ./code.c
f-as -march=rv32i -S -0 riscv.o ./riscv.s
f-as -march=rv32i -0 riscv.o ./riscv.s

f-Id -o riscv ./riscv.o

f-objcopy -O binary --only-section=.text riscv instr.mem

f-objcopy -O binary --only-section=.data riscv data.mem

f-objdump -D -b binary -m riscv:rv32i instr.mem

Debugging

* # Compile with debugging information

* riscv64-unknown-elf-gcc -march=rv64gc -mabi=Ip64d -g -0 my_program
Jfor_loop.c

Start GDB and load program
* riscve4-unknown-elf-gdb my program
* # Run program in GDB
* (gdb) target sim
} (gdb) break linenumber
b (gdb) print variable_name

Profiling
Compile for performance analysis with perf
riscv32-unknown-elf-gcc -march=rv32i -o my_program ./code.c
Run program with QEMU and collect profiling data
gemu-riscv32 -cpu rv32, my_program -perf my_ program
Analyze profiling data with perf

// Not yet configured in cluster

Stress Testing

riscv32-unknown-elf-gcc -march=rv32i -0 stress-ng stress-ng.c
Run stress tests with stress-ng

gemu-riscv32 -L /path/to/riscv/rootfs ./stress-ng --cpu 4 --i0 2 --vm 2 --vm-
bytes 128M --timeout 60s

Custom Stress Checking
riscv32-unknown-elf-gcc -march=rv32i -0 stress _test ./stress_test.c
Run custom stress test program

gemu-riscv32 ./stress_test

Performance Analysis

* riscv32-unknown-elf-gcc -march=rv32i -0 my_program ./code.c

* gemu-riscv32 -L /path/to/riscv/rootfs valgrind --
tool=cachegrind ./my_program

* # Run program with QEMU for performance analysis

* gemu-riscv32 -d in_asm,cpu ./my_program > demu_log.txt
* # Analyze QEMU log

* grep -E 'IN:|CPU:|Cycle:' gemu_log.txt

Testing Spike

lopt/riscv-gnu32/bin/spike --isa=RV32IMAC -d /opt/riscv/riscv32-unknown-elf/bin/pk ./heap32
until reg 0 pc 0x1000 # Stop execution when program counter of core 0 reaches 0x1000
mem 0 0x80000000 # View memory content at address 0x80000000 for core 0

freg O fO # Display floating-point register fO for core O

run 1000 # Resume execution for 1000 instructions

reg O # View all registers for core O

pc O # View the program counter of core O

until pc 0 0x1000 # Stop execution when PC of core 0 reaches address 0x1000

while reg 0 sp 0x80000000 # Continue running while stack pointer (sp) of core 0 is 0x80000000
dump 0x80000000 0x80001000 # Dump memory from address 0x80000000 to 0x80001000
quit

mtime

mtimecmp O

QEMU Debuging

* gemu-system-riscv32 -gdb tcp::1234 -S -kernel ./hello32.0

* riscv32-unknown-elf-gdb ./hello32.0 #Sperate window open

* Debug Commands

* (gdb) target remote :1234 # Connect to the QEMU GDB server

(gdb) load # Load the binary into QEMU

(gdb) b main # Set a breakpoint at the main function

(gdb) c # Continue execution until the breakpoint is hit
(gdb) info reg # Display registers

(gdb) step # Step through code line by line

(gdb) next # Step over functions

(gdb) continue # Continue execution until the next breakpoint

(gdb) quit # Exit GDB

Profiling QEMU

* gemu-system-riscv32 -d exec,int -kernel ./hello32.0

* perf record -e cycles -a -- gemu-system-riscv32 -kernel
/hello32.0

* perf report

Hands-on Embedded C for RISCV

	Slide 1
	Contents
	Slide 3
	Getting Started with Embedded Systems
	Slide 5
	Slide 6
	Types of Embedded Systems
	Slide 8
	Basic Embedded Architecture
	Contents (2)
	Microprocessors and Microcontrollers
	Major Units in Computer Architecture
	Slide 13
	Microprocessors and Microcontrollers (2)
	Contents (3)
	Slide 16
	Slide 17
	HPC Embedded Systems
	Embedded System Key Components
	Processor
	Internal Bus: System on Chip (SoC)
	Memory Unit
	Slide 23
	Scheduling
	Power Consumption
	I/O and Communication Interfaces
	External Buses Low Performance
	Slide 28
	Direct Memory Access (DMA) in Microcontrollers
	Contents (4)
	Memory Mapping
	Slide 32
	Bus System Components
	Address Map/Space Allocation
	Memory Regions
	Memory Mapping Techniques:
	Memory Map Tables and Access Mechanisms
	Virtual Memory Mapping
	Contents (5)
	Embedded System Clock Tree
	Components of a Clock Tree:
	Contents (6)
	Slide 43
	Introduction to Embedded C Programming
	Introduction to Embedded C Programming (2)
	Introduction to Embedded C Programming (3)
	Slide 47
	Requirements: Basic and Complex
	Embedded System Schematic and Memory Mapping
	Slide 50
	Compiler Options
	Define Memory Address
	Embedded System Programming and Memory Layout
	𝐓𝐞𝐱𝐭 (𝐂𝐨𝐝𝐞), 𝐃𝐚𝐭𝐚 and BSS 𝐒𝐞𝐠𝐦𝐞𝐧𝐭:
	Heap and Stack Segments
	Slide 56
	Steps: Code Compilation to Execution
	Debugging
	Profiling
	Stress Testing
	Performance Analysis
	Testing Spike
	QEMU Debuging
	Profiling QEMU
	Hands-on Embedded C for RISCV

