
Architectural Insights and Programming
Techniques for Embedded Systems

by: Tassadaq Hussain
Director Centre for AI and BigData

Professor Department of Electrical Engineering
Namal University Mianwali

Collaborations:

Barcelona Supercomputing Center, Spain
European Network on High Performance and Embedded Architecture and Compilation

Pakistan Supercomputing Center

Contents

Overview of Embedded Systems and their Application
Introduction to Micro-controller and Microprocessors
Embedded System Architectures
Memory Mapping and Bus Architecture
Embedded System Clock Tree
Embedded processor Instruction Set Architecture

Embedded Systems

Getting Started with Embedded Systems

What is an Embedded system ?
Embedded systems are computing devices that are designed for specific tasks or functions within a
larger system. They are embedded as part of a complete device, often with real-time computing
constraints and limited resources.

Examples of Embedded Systems in everyday life ?

Characteristics
of Embedded

Systems

Real-Time Operation

Dedicated Functionality

Resource Constraints:

Reliability and Stability

Size Constraints

Real-Time Operating
Systems (RTOS)

I/O Interaction

05

02 03 04

06 07 08

Domestic
Appliances

Audio/Video
Equipment

Gamming

Telecommunication Medical Devices Cars And Vehicles Sensor Integration

Manufacturing
Equipment

01

Applications of Embedded Systems

Types of Embedded Systems

 Real Time
 Stand alone
 Networked
 Mobile

Based on Performance
of Microcontroller

 Small Scale
 Large Scale
 Sophisticated

 Hard-Real Time
 Soft Real Time

 Control Systems
 Monitoring Systems
 Data Acquisition
 Systems

Based on Application Based on Complexity Based on Functional
Requirements

1 2 3 4

Basic Embedded Architecture

Hardware

Software

Peripherals Microprocessor

Embedded OS Application

Input Output

Embedded System

Contents

Overview of Embedded Systems and their Application
Introduction to Micro-controller and Microprocessors
Embedded System Architectures
Memory Mapping and Bus Architecture
Embedded System Clock Tree
Embedded processor Instruction Set Architecture

Microprocessors and Microcontrollers

Microprocessor:
A central processing unit (CPU) on a single integrated circuit
(IC) designed to perform general-purpose computation.

Key Characteristics: High processing power, requires external
components for I/O, memory, and storage.

Examples: Intel Core, AMD Ryzen

Microcontrollers:

An integrated circuit designed to perform specific control
functions, containing a CPU, memory, and I/O peripherals on a
single chip.

Key Characteristics: Compact, low power, designed for
specific tasks.

Examples: Arduino (ATmega328), PIC (Microchip
PIC16F877A)

 Key Differences
• Architecture:

• Microprocessors: CPU only, needs external components.
• Microcontrollers: CPU, memory, I/O peripherals

integrated.
• Usage:

• Microprocessors: General-purpose computing, PCs,
servers.

• Microcontrollers: Embedded systems, appliances,
automotive.

• Power Consumption:
• Microprocessors: Higher power consumption.
• Microcontrollers: Lower power consumption.

• Complexity and Cost:
• Microprocessors: More complex, higher cost.
• Microcontrollers: Simpler, cost-effective for specific

tasks.

Major Units in Computer Architecture
 Memory Management Unit (MMU)
 Purpose: Translates virtual addresses to physical addresses, handles memory protection, and manages virtual
memory.
 Integration: Essential for supporting sophisticated memory management required by modern operating systems.
 Bus System
 Purpose: Facilitates communication between the CPU, memory, and peripherals.
 Components:
 Address Bus: Carries memory addresses.
 Data Bus: Transfers data.
 Control Bus: Sends control signals.
 Integration: Crucial for ensuring all parts of the computer system can communicate effectively.
 Input/Output (I/O) System
 Purpose: Manages data flow between the CPU and external devices.
 Components:
 I/O Controllers: Interfaces that manage the interaction between the system and peripheral devices.
 I/O Ports: Connection points for external devices.
 Integration: Often considered part of the bus system, as it involves communication pathways.
 System Software and Firmware
 BIOS/UEFI: Initializes hardware and provides a runtime environment for the operating system.
 Operating System: Manages hardware resources and provides services for application software.
 Firmware: Low-level software embedded in hardware to control device-specific functions.

MICROPROCESSOR

ALU

Control unit

Register Array

Serial Communication

I2C SPI

UART

Ext. Oscillator
RC Oscillator

PLL

ADC Channels

DMA Controller

CPU

Timers

Timer 1
Timer 2

WDT

Interrupts

GPIO Ports

Port A Port B Port C

Memory

Program
Memory

RAM

EEPROM

Microprocessors and Microcontrollers

Applications of Microprocessors

• Personal Computers

• Servers and Workstations

• Gaming Consoles

• Smartphones and Tablets

• High-performance computing systems

Applications of Microcontrollers
 Home Appliances (Microwaves, Washing Machines)
 Automotive Systems (Engine Control Units, Airbags)
 Consumer Electronics (Remote Controls, Toys)
 Industrial Automation (Robotic Controls, Sensors)
 IoT Devices (Smart Home Devices, Wearables)

Architecture Comparison

Key Components: ALU, Control Unit, Registers, Memory
(RAM/ROM), I/O Ports, Timers

Development Tools

• Microprocessors: Compilers, Debuggers, IDEs (e.g., GCC, Visual
Studio)

• Microcontrollers: Integrated Development Environments (IDEs),
Simulators, Debuggers (e.g., MPLAB, Keil uVision, Arduino IDE)

Trends and Future Directions

Increasing Integration and Miniaturization AI and Machine Learning
Integration IoT and Edge Computing Low Power and Energy-Efficient
Designs

Contents

Overview of Embedded Systems and their Application
Introduction to Micro-controller and Microprocessors
Embedded System Architectures
Memory Mapping and Bus Architecture
Embedded System Clock Tree
Embedded processor Instruction Set Architecture

https://intechhouse.com/blog/embedded-systems-architecture/

HPC Embedded Systems

Embedded System Key Components

 Processor
 ISA
 Internal Bus
 Memory Unit
 Power
 Scheduling
 Input / Output
 DMA

Processor
 RISC (Reduced Instruction Set Computing):
 Common ISAs include ARM and RISC-V.
 Simplified instructions for efficient execution and

low power consumption.

Internal Bus: System on Chip (SoC)
 Integrated Components:
 Combines CPU, memory, I/O ports, and other peripherals on a

single chip.
 Reduces physical space and power consumption.
 Peripheral Integration:
 Includes components such as ADCs, DACs, timers, PWM

controllers, and communication interfaces (UART, SPI, I2C, etc.).

Memory Unit
 On-Chip Memory:
 Typically includes SRAM and ROM/Flash memory.
 Fast access times for real-time performance.
 External Memory Interfaces:
 Support for connecting to external memory modules

like DRAM or NOR/NAND Flash.

 SRAM (Static RAM)
 Purpose: Temporary storage for variables and data during execution.
 Characteristics: Volatile, fast access.
 Usage: Stores variables, stack, and temporary data.

 EEPROM
 Purpose: Stores data that must persist across power cycles.
 Characteristics: Non-volatile, byte-addressable.
 Usage: Saves user settings and calibration data.

 Flash Memory (Program Memory)
 Purpose: Stores the firmware or program code.
 Characteristics: Non-volatile, reprogrammable.
 Usage: Holds the application code and bootloader.

Scheduling
 Real-Time Operating System (RTOS) Support:
 Features for deterministic execution and low-latency interrupts.
 Dedicated Timers and Counters:
 Hardware support for precise timing operations.
 Interrupt Handling:
 Fast and efficient interrupt processing capabilities.

Power Consumption
 Power Management Features:
 Multiple power modes (active, idle, sleep, deep sleep).
 Dynamic voltage and frequency scaling (DVFS).
 Efficient Instruction Execution:
Instructions optimized for minimal power use per operation.

I/O and Communication Interfaces
 Integrated Communication Peripherals:
 Support for serial communication protocols like

UART, SPI, I2C, CAN, and USB.
 GPIO (General-Purpose Input/Output) Pins:
 Configurable pins for direct hardware interfacing

and control.

External Buses Low Performance
 Increasing demand for high-speed data transfer rates
- Growing need for low latency and high throughput
- Scalability and flexibility requirements
- Advancements in technology and cost reductions
 UART (Universal Asynchronous Receiver-Transmitter)

 - Theory: UART is a serial communication protocol that uses asynchronous transmission, meaning that data is transmitted
one bit at a time, without a clock signal.

 Pros:
 Simple and easy to implement
 Low power consumption
 Widely used in serial communication applications

 Cons:
 Limited data transfer rate (typically up to 115.2 kbps)
 No built-in error detection or correction
 Not suitable for high-speed or real-time applications

SPI (Serial Peripheral Interface)
 SPI is a serial communication protocol that
uses synchronous transmission, meaning that
data is transmitted with a clock signal.

- Pros:

 - Full-duplex communication (simultaneous
read and write)

 - High data transfer rates (up to 100 Mbps or
more)

 - Simple and easy to implement

- Cons:

 - Requires four wires (MOSI, MISO, SCK, SS)

 - No built-in error detection or correction

 - Can be prone to noise and interference
issues

I2C (Inter-Integrated Circuit)
 - Theory: I2C is a serial communication protocol
that uses synchronous transmission, meaning
that data is transmitted with a clock signal.

- Pros:

 - Multi-master, multi-slave communication

 - Built-in error detection and correction
(ACK/NAK protocol)

 - Widely used in microcontroller and sensor
applications

- Cons:

 - Limited data transfer rate (up to 400 kbps in
standard mode, 3.4 Mbps in fast mode)

 - More complex than UART, requiring more pins
and logic

 - Can be prone to noise and interference issues

Direct Memory Access (DMA) in Microcontrollers

Offload CPU:
 DMA allows the CPU to delegate data transfer tasks to the DMA controller, freeing
up the CPU to perform other processing tasks.

Efficient Data Transfer:
 DMA enables high-speed data transfers directly between memory and peripherals
without CPU intervention for each data byte or word, improving overall system efficiency.

Extended Address Space:
 DMA can handle block transfers using a single address setup, efficiently moving
large amounts of data and effectively increasing the addressable data space.

Contents

Overview of Embedded Systems and their Application
Introduction to Micro-controller and Microprocessors
Embedded System Architectures
Memory Mapping and Bus Architecture
Embedded System Clock Tree
Embedded processor Instruction Set Architecture

Memory Mapping
 Memory mapping is a crucial aspect of System on Chip (SoC) architecture. It refers to the way different

components of the SoC are allocated addresses in the memory space. This mapping allows the CPU and
other components to access and interact with various parts of the system's memory and peripherals.

 Key Aspects of Memory Mapping in SoCs.
 Bus System
 Address Space Allocation
 Memory Regions
 Memory Mapping Techniques:
 Memory Map Tables
 Access Mechanisms
 Virtual Memory Mapping
 Address Decoding:

 Example of Memory Mapping in an SoC
 0x0000_0000 - 0x1FFF_FFFF: RAM (1 GB of addressable RAM)
 0x2000_0000 - 0x3FFF_FFFF: ROM or Flash memory
 0x4000_0000 - 0x5FFF_FFFF: Peripheral registers (e.g., GPIO, UART)
 0x6000_0000 - 0x7FFF_FFFF: External memory or memory-mapped I/O space

Bus System Components
 Address Bus: Carries address information from the CPU to memory and peripherals. The

address bus width determines the range of addresses that can be used in memory mapping.
 Data Bus: Transfers data between components based on the address specified on the

address bus.
 Control Bus: Carries control signals that manage the read and write operations and other

control functions.
 Functions:

 Memory Map Configuration
 Interconnects and Buses
 Address Decoding
 Memory-Mapped I/O

Example:

On-Chip Memory and Peripheral Mapping: Within the bus system, the memory map determines the layout of on-chip
memory, peripheral registers, and I/O devices. The bus system ensures that the CPU and other components access
the correct addresses based on this map.

Address Map/Space Allocation
 Memory Address Space: Defines the range of addresses

used to access different types of memory, including RAM,
ROM, and external memory.

 Peripheral Address Space: Allocates addresses for
various peripherals and I/O devices.

Memory Regions

 Boot Memory: Often used to store the bootloader or initial
firmware.

 Code Memory: Stores executable code and program instructions.
 Data Memory: Used for storing variables, stack, and heap data.
 Peripheral Registers: Memory-mapped addresses used to control

and interact with peripheral devices (e.g., timers, UARTs, GPIOs).

Memory Mapping Techniques:
 Flat Memory Model: All memory

and peripherals are mapped
into a single, linear address
space.

 Segmented Memory Model:
Memory and peripherals are
divided into segments or blocks,
each with a specific address
range.

Memory Map Tables and Access Mechanisms
 Memory Map Table: A detailed table that outlines the

starting address, size, and type of each memory region
and peripheral.

 Memory-Mapped I/O: Peripherals are accessed by
reading from or writing to specific memory addresses.

 Access Mechanism:
 Linker Script: Define how different code and data

sections are placed in memory.
 Direct Memory Access (DMA): Allows peripherals to

directly access memory without CPU intervention,
reducing latency and improving performance.

Virtual Memory Mapping
 Virtual Address Space: Some SoCs use virtual memory systems to abstract physical memory

addresses, providing flexibility in memory management.
 Virtual Address: It is an address of a program's memory space.
 Page Table: The table contains mappings from virtual addresses to physical addresses. Each entry in the

page table corresponds to a "page" of memory.
 Page Size: Memory is divided into fixed-size pages, typically ranging from 2 KB to 16 KB (though sizes like

4 KB or 8 KB are common). The virtual address is split into two parts:
 Page Number: Identifies the page within the virtual address space.
 Offset: Identifies the specific location within the page.

 Translation: When a virtual address is used, the page number is looked up in the page table to find the
corresponding physical page. The offset is then added to this physical page to get the final physical address.

 Physical Address: The final physical address points to the exact location in the system's memory (RAM)
where the data is stored.

Contents

Overview of Embedded Systems and their Application
Introduction to Micro-controller and Microprocessors
Embedded System Architectures
Memory Mapping and Bus Architecture
Embedded System Clock Tree
Embedded processor Instruction Set Architecture

Embedded System Clock Tree
 It is responsible for distributing clock signals throughout the system. It ensures

that all components receive accurate and synchronized timing signals necessary
for proper operation. Here's a detailed look at the clock tree and its role in
embedded systems:

 Purpose of the Clock Tree:
 Timing Distribution: The clock tree distributes clock signals from a central

oscillator or clock source to various components and subsystems within the
embedded system.

 Synchronization: Ensures that different parts of the system operate in sync,
which is crucial for reliable and predictable system performance.

 Components of a Clock Tree:
 Clock Source: The primary oscillator or clock generator that provides the initial clock

signal.
 Clock Distributors: Distributes the clock to various parts of the system. This may include

clock buffers, drivers, and multiplexers.
 Clock Dividers: Reduce the frequency of the clock signal to provide lower frequency

clocks for different subsystems.
 Clock Multipliers: Increase the frequency of the clock signal if higher frequencies are

required for certain components.
 Phase-Locked Loops (PLLs) and Delay-Locked Loops (DLLs): Used to generate stable,

high-frequency clock signals from a lower-frequency reference clock, or to align the phase
of clocks.

 Clock Gating: Mechanism to enable or disable the clock signal to specific parts of the
system to save power when those parts are not in use.

Contents

Overview of Embedded Systems and their Application
Introduction to Micro-controller and Microprocessors
Embedded System Architectures
Memory Mapping and Bus Architecture
Embedded System Clock Tree
Embedded System Programming

 Range of Applications

Introduction to Embedded C Programming

Embedded C
 Embedded C and standard C (often just called "C")

are both programming languages used to write
software, but they differ in their target environments,
constraints, and some aspects of functionality.

 Embedded C can be considered as the subset of C
language. It uses same core syntax as C.

 Embedded C programs need cross-compliers to
compile and generate HEX code

 Embedded C is designed for embedded system
programming with specific constraints, hardware
interaction requirements, and specialized
development tools.

Introduction to Embedded C Programming

A structural and programming language used by
developers to create desktop-based applications

Target Environment
An extension of C primarily used to develop
microcontroller based applications.

Typically used on systems with more resources.
Memory Constraint

Often used in environments with limited resources
(memory, processing power).

Hardware interactions are managed by operating system
or libraries, unless used in system-level programming.

Hardware Interaction
Interacts directly with hardware components, such as
registers, I/O ports, and peripheral devices.

Uses standard libraries provided by the C standard
library (e.g., stdio.h, stdlib.h) and other platform-specific
or third-party libraries.

Libraries and Extensions
Uses specialized libraries and extensions for embedded
systems (e.g., specific APIs for handling hardware
interrupts, timers, and serial communication).

VS

Introduction to Embedded C Programming

Typically uses general-purpose IDEs (e.g., Visual Studio,
Eclipse) and compilers (e.g., GCC, Clang).

Development Tools
Specific Integrated Development Environments (IDEs),
compilers, and debuggers designed for embedded system
development (e.g., Keil, IAR, MPLAB).

It can be used in real-time applications, but it is not
inherently designed for real-time constraints and may
rely on external real-time extensions or operating
systems.

Real-Time Constraint
Often used in real-time systems where meeting timing
constraints is crucial. It may include real-time operating
systems (RTOS) or bare-metal programming.

Code is generally more portable across different
platforms, adhering to the C standard.

Code Portability
Code is often less portable due to hardware-specific
dependencies and optimizations. Porting code between
different embedded platforms can be challenging.

VS

 Target Hardware Architecture:
 Processor and Specifications:
 Program Memory and Data Memory Size:
 Peripherals and Components

 Memory Mapping
 Software Development

 GCC Compiler: Compiler: riscv32-unknown-elf-gcc or riscv64-unknown-elf-gcc.
 Debugger: GDB with RISC-V support.
 ELF Loader: OpenOCD or RISC-V Proxy Kernel.

Stress Checking and Profiling Tools for RISC-V:
 RISC-V Performance Monitor or Perf.

Requirements: Basic and Complex

Embedded System Schematic
and Memory Mapping

SW Development Environment

0x00000142 4912
0x00000144 6808
0x00000146 F040000F
0x0000014A 6008

Start
; direction register
 LDR R1,=GPIO_PORTD_DIR_R
 LDR R0,[R1]
 ORR R0,R0,#0x0F
; make PD3-0 output
 STR R0, [R1]

Source code

Build Target (F7)

Download
Object code

Processor

Memory

I/O

Simulated
Microcontroller

Address Data

Editor KeilTM uVision®

Processor

Memory

I/O

Real
Microcontroller

Start
Debug
Session

Start
Debug
Session

Compiler Options
 riscv32-unknown-elf-gcc //

-march=rv32imac // Architecture and ISA Extensions:
-mabi=ilp32 // ABI (Application Binary Interface: Int, long, pointer):
-O2 // Optimization Levels:
-mtune=sifive-e31 // Code Genartion for specific RISCV core
-g // Debugging and Profiling -pg
 mhard-float // Floating Point Options: Hard/Soft Floting point:

 -T linker_script.ld // -T: Specify a linker script.
-I/path/to/include // Include Paths and Libraries
-L/path/to/li //
-o output.elf // Output file
source.c // source file
-lm // -lm (math library)

 -funroll-loops // Loop Unrolling option

Define Memory Address

Embedded System Programming and Memory Layout

 Understanding C memory layout is crucial for debugging, optimizing
performance, security and interfacing with low-level systems.

 𝐓𝐞𝐱𝐭 () :𝐂𝐨𝐝𝐞 𝐒𝐞𝐠𝐦𝐞𝐧𝐭
 𝐃𝐚𝐭𝐚 𝐒𝐞𝐠𝐦𝐞𝐧𝐭:
 𝐁𝐒𝐒 𝐒𝐞𝐠𝐦𝐞𝐧𝐭:
 𝐇𝐞𝐚𝐩 𝐒𝐞𝐠𝐦𝐞𝐧𝐭:
 𝐒𝐭𝐚𝐜𝐤 𝐒𝐞𝐠𝐦𝐞𝐧𝐭:

 𝐓𝐞𝐱𝐭 (), and BSS :𝐂𝐨𝐝𝐞 𝐃𝐚𝐭𝐚 𝐒𝐞𝐠𝐦𝐞𝐧𝐭
 The text segment contains the executable code of the program. It is read-only and holds the instructions

for the program.
 The data segment contains initialized global and static variables. In the example code, global_data is an

initialized global variable with value 10.
 The BSS (Block Started by Symbol) segment contains uninitialized global and static variables. The BSS

segment is set to zero during program startup. In the example code, global_bss variable will be added to
the bss section by linker.

 The Text, Data, and BSS segments collectively form the static part of the program that contains fixed-
sized instructions and data that persists throughout its execution. These should be kept in a non-volatile
memory to ensure successful execution of code following a power cycle.

 You can use the size utility that comes with the compiler to get the size of the executable. Below is the
output for the example code:

 text data bss dec hex filename

 1585 600 8 2193 891 main.out

Heap and Stack Segments
 𝐇𝐞𝐚𝐩 𝐒𝐞𝐠𝐦𝐞𝐧𝐭:
 The heap segment is used for dynamic memory allocation during the program's runtime. In the

example, we allocate memory for an integer using malloc(), and heap_var points to the newly
allocated memory location.

 It's important to free the allocated memory after it is no longer needed.
 Over time, repeated memory allocation without freeing memory can cause the program's memory

usage to grow unnecessarily leading to poor performance and runtime allocation failures.

 𝐒𝐭𝐚𝐜𝐤 𝐒𝐞𝐠𝐦𝐞𝐧𝐭:
 The stack segment is used for managing function calls, local variables, and function call frames.

In the example, stack_var is a local variable that will be allotted on the stack during the execution
of the main() function.

 The stack and heap memory share the dynamic memory area of the program. The stack typically
starts from the end address of the memory and grows downward, while the heap starts from the
end of the BSS segment.

Steps: Code Compilation to Execution
 riscv32-unknown-elf-gcc -march=rv32i -S -o riscv.s ./code.c
 riscv32-unknown-elf-as -march=rv32i -S -o riscv.o ./riscv.s
 riscv32-unknown-elf-as -march=rv32i -o riscv.o ./riscv.s
 riscv32-unknown-elf-ld -o riscv ./riscv.o
 riscv32-unknown-elf-objcopy -O binary --only-section=.text riscv instr.mem
 riscv32-unknown-elf-objcopy -O binary --only-section=.data riscv data.mem
 riscv32-unknown-elf-objdump -D -b binary -m riscv:rv32i instr.mem

Debugging
 # Compile with debugging information
 riscv64-unknown-elf-gcc -march=rv64gc -mabi=lp64d -g -o my_program

./for_loop.c

Start GDB and load program
 riscv64-unknown-elf-gdb my_program
 # Run program in GDB
 (gdb) target sim

 (gdb) break linenumber
 (gdb) print variable_name

Profiling
 # Compile for performance analysis with perf
 riscv32-unknown-elf-gcc -march=rv32i -o my_program ./code.c
 # Run program with QEMU and collect profiling data
 qemu-riscv32 -cpu rv32, my_program -perf my_program
 # Analyze profiling data with perf
 // Not yet configured in cluster

Stress Testing
 riscv32-unknown-elf-gcc -march=rv32i -o stress-ng stress-ng.c
 # Run stress tests with stress-ng
 qemu-riscv32 -L /path/to/riscv/rootfs ./stress-ng --cpu 4 --io 2 --vm 2 --vm-

bytes 128M --timeout 60s
 Custom Stress Checking
 riscv32-unknown-elf-gcc -march=rv32i -o stress_test ./stress_test.c
 # Run custom stress test program
 qemu-riscv32 ./stress_test

Performance Analysis
 riscv32-unknown-elf-gcc -march=rv32i -o my_program ./code.c
 qemu-riscv32 -L /path/to/riscv/rootfs valgrind --

tool=cachegrind ./my_program
 # Run program with QEMU for performance analysis
 qemu-riscv32 -d in_asm,cpu ./my_program > qemu_log.txt
 # Analyze QEMU log
 grep -E 'IN:|CPU:|Cycle:' qemu_log.txt

Testing Spike
/opt/riscv-gnu32/bin/spike --isa=RV32IMAC -d /opt/riscv/riscv32-unknown-elf/bin/pk ./heap32
until reg 0 pc 0x1000 # Stop execution when program counter of core 0 reaches 0x1000
mem 0 0x80000000 # View memory content at address 0x80000000 for core 0
freg 0 f0 # Display floating-point register f0 for core 0
run 1000 # Resume execution for 1000 instructions
reg 0 # View all registers for core 0
pc 0 # View the program counter of core 0
until pc 0 0x1000 # Stop execution when PC of core 0 reaches address 0x1000
while reg 0 sp 0x80000000 # Continue running while stack pointer (sp) of core 0 is 0x80000000
dump 0x80000000 0x80001000 # Dump memory from address 0x80000000 to 0x80001000
quit
mtime
mtimecmp 0

QEMU Debuging
 qemu-system-riscv32 -gdb tcp::1234 -S -kernel ./hello32.o
 riscv32-unknown-elf-gdb ./hello32.o #Sperate window open
 Debug Commands
 (gdb) target remote :1234 # Connect to the QEMU GDB server
(gdb) load # Load the binary into QEMU
(gdb) b main # Set a breakpoint at the main function
(gdb) c # Continue execution until the breakpoint is hit
(gdb) info reg # Display registers
(gdb) step # Step through code line by line
(gdb) next # Step over functions
(gdb) continue # Continue execution until the next breakpoint
(gdb) quit # Exit GDB

Profiling QEMU
 qemu-system-riscv32 -d exec,int -kernel ./hello32.o
 perf record -e cycles -a -- qemu-system-riscv32 -kernel

./hello32.o
 perf report

Hands-on Embedded C for RISCV

	Slide 1
	Contents
	Slide 3
	Getting Started with Embedded Systems
	Slide 5
	Slide 6
	Types of Embedded Systems
	Slide 8
	Basic Embedded Architecture
	Contents (2)
	Microprocessors and Microcontrollers
	Major Units in Computer Architecture
	Slide 13
	Microprocessors and Microcontrollers (2)
	Contents (3)
	Slide 16
	Slide 17
	HPC Embedded Systems
	Embedded System Key Components
	Processor
	Internal Bus: System on Chip (SoC)
	Memory Unit
	Slide 23
	Scheduling
	Power Consumption
	I/O and Communication Interfaces
	External Buses Low Performance
	Slide 28
	Direct Memory Access (DMA) in Microcontrollers
	Contents (4)
	Memory Mapping
	Slide 32
	Bus System Components
	Address Map/Space Allocation
	Memory Regions
	Memory Mapping Techniques:
	Memory Map Tables and Access Mechanisms
	Virtual Memory Mapping
	Contents (5)
	Embedded System Clock Tree
	Components of a Clock Tree:
	Contents (6)
	Slide 43
	Introduction to Embedded C Programming
	Introduction to Embedded C Programming (2)
	Introduction to Embedded C Programming (3)
	Slide 47
	Requirements: Basic and Complex
	Embedded System Schematic and Memory Mapping
	Slide 50
	Compiler Options
	Define Memory Address
	Embedded System Programming and Memory Layout
	𝐓𝐞𝐱𝐭 (𝐂𝐨𝐝𝐞), 𝐃𝐚𝐭𝐚 and BSS 𝐒𝐞𝐠𝐦𝐞𝐧𝐭:
	Heap and Stack Segments
	Slide 56
	Steps: Code Compilation to Execution
	Debugging
	Profiling
	Stress Testing
	Performance Analysis
	Testing Spike
	QEMU Debuging
	Profiling QEMU
	Hands-on Embedded C for RISCV

