Architectural Insights and Programming Techniques for Embedded Systems

by: Tassadaq Hussain Director Centre for AI and BigData Professor Department of Electrical Engineering Namal University Mianwali

Collaborations:

Barcelona Supercomputing Center, Spain European Network on High Performance and Embedded Architecture and Compilation Pakistan Supercomputing Center

Contents

Overview of Embedded Systems and their Application

Introduction to Micro-controller and Microprocessors Embedded System Architectures Memory Mapping and Bus Architecture Embedded System Clock Tree Embedded processor Instruction Set Architecture

Embedded Systems

Getting Started with Embedded Systems

What is an Embedded system ?

Embedded systems are computing devices that are designed for specific tasks or functions within a larger system. They are embedded as part of a complete device, often with real-time computing constraints and limited resources.

Examples of Embedded Systems in everyday life ?

Real-Time Operation

Characteristics of Embedded **Systems**

Dedicated Functionality

Resource Constraints:

Reliability and Stability

Size Constraints

Real-Time Operating Systems (RTOS)

I/O Interaction

Applications of Embedded Systems

Types of Embedded Systems

Based on Application	Based on Performance of Microcontroller	Based on Complexity	Based on Functional Requirements
 Real Time Stand alone Networked Mobile 	Small ScaleLarge ScaleSophisticated	Hard-Real TimeSoft Real Time	 Control Systems Monitoring Systems Data Acquisition Systems
1	2	3	4

EMBEDDED WORLD IS RUNNING

Now **30 billion** embedded systems are in operation **worldwide**

70% of all medical devices use embedded systems Most IoT devices contain embedded systems

Basic Embedded Architecture

Contents

Overview of Embedded Systems and their Application **Introduction to Micro-controller and Microprocessors** Embedded System Architectures Memory Mapping and Bus Architecture Embedded System Clock Tree Embedded processor Instruction Set Architecture

Microprocessors and Microcontrollers

Microprocessor:

A central processing unit (CPU) on a single integrated circuit (IC) designed to perform general-purpose computation.

Key Characteristics: High processing power, requires external components for I/O, memory, and storage.

Examples: Intel Core, AMD Ryzen

Microcontrollers:

An integrated circuit designed to perform specific control functions, containing a CPU, memory, and I/O peripherals on a single chip.

Key Characteristics: Compact, low power, designed for specific tasks.

Examples: Arduino (ATmega328), PIC (Microchip PIC16F877A)

Key Differences

- Architecture:
 - Microprocessors: CPU only, needs external components.
 - Microcontrollers: CPU, memory, I/O peripherals integrated.
- Usage:
 - Microprocessors: General-purpose computing, PCs, servers.
 - Microcontrollers: Embedded systems, appliances, automotive.

Power Consumption:

- Microprocessors: Higher power consumption.
- Microcontrollers: Lower power consumption.

Complexity and Cost:

- Microprocessors: More complex, higher cost.
- Microcontrollers: Simpler, cost-effective for specific tasks.

Major Units in Computer Architecture

Memory Management Unit (MMU)

Purpose: Translates virtual addresses to physical addresses, handles memory protection, and manages virtual memory.

Integration: Essential for supporting sophisticated memory management required by modern operating systems.

Bus System

Purpose: Facilitates communication between the CPU, memory, and peripherals.

Components:

Address Bus: Carries memory addresses.

Data Bus: Transfers data.

Control Bus: Sends control signals.

Integration: Crucial for ensuring all parts of the computer system can communicate effectively.

Input/Output (I/O) System

Purpose: Manages data flow between the CPU and external devices.

Components:

I/O Controllers: Interfaces that manage the interaction between the system and peripheral devices.

I/O Ports: Connection points for external devices.

Integration: Often considered part of the bus system, as it involves communication pathways.

System Software and Firmware

BIOS/UEFI: Initializes hardware and provides a runtime environment for the operating system. Operating System: Manages hardware resources and provides services for application software. Firmware: Low-level software embedded in hardware to control device-specific functions.

Microprocessors and Microcontrollers

Applications of Microprocessors

- Personal Computers
- Servers and Workstations
- Gaming Consoles
- Smartphones and Tablets
- High-performance computing systems

Applications of Microcontrollers

- Home Appliances (Microwaves, Washing Machines)
- Automotive Systems (Engine Control Units, Airbags)
- Consumer Electronics (Remote Controls, Toys)
- Industrial Automation (Robotic Controls, Sensors)
- IoT Devices (Smart Home Devices, Wearables)

Architecture Comparison

Key Components: ALU, Control Unit, Registers, Memory (RAM/ROM), I/O Ports, Timers

Development Tools

- Microprocessors: Compilers, Debuggers, IDEs (e.g., GCC, Visual Studio)
- Microcontrollers: Integrated Development Environments (IDEs), Simulators, Debuggers (e.g., MPLAB, Keil uVision, Arduino IDE)

Trends and Future Directions

Increasing Integration and Miniaturization AI and Machine Learning Integration IoT and Edge Computing Low Power and Energy-Efficient Designs

Contents

Overview of Embedded Systems and their Application Introduction to Micro-controller and Microprocessors

Embedded System Architectures

Memory Mapping and Bus Architecture Embedded System Clock Tree Embedded processor Instruction Set Architecture

https://intechhouse.com/blog/embedded-systems-architecture/

HPC Embedded Systems

Embedded System Key Components

- Processor
- ISA
- Internal Bus
- Memory Unit
- Power
- Scheduling
- Input / Output
- DMA

Processor

- RISC (Reduced Instruction Set Computing):
- Common ISAs include ARM and RISC-V.
- Simplified instructions for efficient execution and low power consumption.

Internal Bus: System on Chip (SoC)

- Integrated Components:
- Combines CPU, memory, I/O ports, and other peripherals on a single chip.
- Reduces physical space and power consumption.
- Peripheral Integration:
- Includes components such as ADCs, DACs, timers, PWM controllers, and communication interfaces (UART, SPI, I2C, etc.).

Memory Unit

- On-Chip Memory:
- Typically includes SRAM and ROM/Flash memory.
- Fast access times for real-time performance.
- External Memory Interfaces:
- Support for connecting to external memory modules like DRAM or NOR/NAND Flash.

SRAM (Static RAM)

Purpose: Temporary storage for variables and data during execution. Characteristics: Volatile, fast access. Usage: Stores variables, stack, and temporary data.

EEPROM

Purpose: Stores data that must persist across power cycles. Characteristics: Non-volatile, byte-addressable. Usage: Saves user settings and calibration data.

Flash Memory (Program Memory)

Purpose: Stores the firmware or program code. Characteristics: Non-volatile, reprogrammable. Usage: Holds the application code and bootloader.

Scheduling

- Real-Time Operating System (RTOS) Support:
- Features for deterministic execution and low-latency interrupts.
- Dedicated Timers and Counters:
- Hardware support for precise timing operations.
- Interrupt Handling:
- Fast and efficient interrupt processing capabilities.

- Power Consumption
- **Power Management Features:**
- Multiple power modes (active, idle, sleep, deep sleep).
- Dynamic voltage and frequency scaling (DVFS).
- Efficient Instruction Execution:

Instructions optimized for minimal power use per operation.

I/O and Communication Interfaces

- Integrated Communication Peripherals:
- Support for serial communication protocols like UART, SPI, I2C, CAN, and USB.
- GPIO (General-Purpose Input/Output) Pins:
- Configurable pins for direct hardware interfacing and control.

External Buses Low Performance

Increasing demand for high-speed data transfer rates

- Growing need for low latency and high throughput
- Scalability and flexibility requirements
- Advancements in technology and cost reductions

• UART (Universal Asynchronous Receiver-Transmitter)

- ³ Theory: UART is a serial communication protocol that uses asynchronous transmission, meaning that data is transmitted one bit at a time, without a clock signal.
- [}] Pros:
 - Simple and easy to implement
 - Low power consumption
 - Widely used in serial communication applications
- [}] Cons:
 - Limited data transfer rate (typically up to 115.2 kbps)
 - No built-in error detection or correction
 - Not suitable for high-speed or real-time applications

SPI (Serial Peripheral Interface)

SPI is a serial communication protocol that uses synchronous transmission, meaning that data is transmitted with a clock signal.

- Pros:

- Full-duplex communication (simultaneous read and write)

- High data transfer rates (up to 100 Mbps or more)
- Simple and easy to implement

- Cons:

- Requires four wires (MOSI, MISO, SCK, SS)
- No built-in error detection or correction
- Can be prone to noise and interference issues

I2C (Inter-Integrated Circuit)

- Theory: I2C is a serial communication protocol that uses synchronous transmission, meaning that data is transmitted with a clock signal.

- Pros:

- Multi-master, multi-slave communication

- Built-in error detection and correction (ACK/NAK protocol)
- Widely used in microcontroller and sensor applications
- Cons:

- Limited data transfer rate (up to 400 kbps in standard mode, 3.4 Mbps in fast mode)

- More complex than UART, requiring more pins and logic
- Can be prone to noise and interference issues

Direct Memory Access (DMA) in Microcontrollers

Offload CPU:

DMA allows the CPU to delegate data transfer tasks to the DMA controller, freeing up the CPU to perform other processing tasks.

Efficient Data Transfer:

DMA enables high-speed data transfers directly between memory and peripherals without CPU intervention for each data byte or word, improving overall system efficiency.

Extended Address Space:

DMA can handle block transfers using a single address setup, efficiently moving large amounts of data and effectively increasing the addressable data space.

Contents

Overview of Embedded Systems and their Application Introduction to Micro-controller and Microprocessors Embedded System Architectures

Memory Mapping and Bus Architecture

Embedded System Clock Tree

Embedded processor Instruction Set Architecture

Memory Mapping

- Memory mapping is a crucial aspect of System on Chip (SoC) architecture. It refers to the way different components of the SoC are allocated addresses in the memory space. This mapping allows the CPU and other components to access and interact with various parts of the system's memory and peripherals.
- Key Aspects of Memory Mapping in SoCs.
 - Bus System
 - Address Space Allocation
 - Memory Regions
 - Memory Mapping Techniques:
 - ▹ Memory Map Tables
 - Access Mechanisms
 - Virtual Memory Mapping
 - Address Decoding:
- Example of Memory Mapping in an SoC
 - > 0x0000_0000 0x1FFF_FFFF: RAM (1 GB of addressable RAM)
 - > 0x2000_0000 0x3FFF_FFFF: ROM or Flash memory
 - > 0x4000_0000 0x5FFF_FFFF: Peripheral registers (e.g., GPIO, UART)
 - > 0x6000_0000 0x7FFF_FFFF: External memory or memory-mapped I/O space

Accord Reserved 0x4002 3000 Extend 0x4002 3000 Extend 0x4002 3000 Extend 0x4002 3000 Flash Interface 0x4002 1000 Reserved 0x4002 2000 0x4002 2000 0x4002 2000 Reserved 0x4002 1000 Reserved 0x4002 1000 Reserved 0x4002 1000 Reserved 0x4001 3000 USART 0x4001 3000 USART 0x4001 3000 Sprit 0x4001 3000 Sprit 0x4001 3000 USART 0x4001 3000 Sprit 0x4						
Oxf002 3000 Reserved 0x4002 3000 EXTEND 0x4002 2000 Flash Interface 0x4002 2000 Flash Interface 0x4002 2000 Reserved 0x4002 0000 Reserved 0x4001 3000 Reserved 0x4001 3000 </td <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>Reserved</td>					_	Reserved
0x4002 3800 EXTEND 0x4002 2400 Reserved 0x4002 2400 Flash Interface 0x4002 21000 0x4002 1000 0x4002 2000 Reserved 0x4002 2000 Reserved 0x4002 2000 Reserved 0x4002 0000 0x4002 1000 0x4002 0000 Reserved 0x4001 3000 Control 0x4001 3000 Reserved 0x4001 3000 <td></td> <td></td> <td></td> <td>Г</td> <td></td> <td>Reserved</td>				Г		Reserved
0x4002 2400 Flash interface 0x4002 2000 Reserved 0x4002 1000 Reserved 0x4001 3000 DMA 0x4001 3000 Reserved 0x4001 3200 Reserved 0x4001 3000				/		EXTEND
Action Flash Interface 0x4002 2000 Reserved 0x4002 1000 Reserved 0x4002 0400 0x4002 0400 0x4002 0400 0x4002 0400 0x4001 3000 Reserved 0x4001 3800 0x4001 3800 0x4001 3800 Reserved 0x4001 3800 0x4001 3800 0x4001 3800 Reserved 0x4001 1800 Reserved 0x4001 1800 Reserved 0x4001 0800 Reserved 0x4001 0000				/		Reserved
No.4002 1400 0x4002 1000 Reserved Reserved 0x4002 1400 0x4002 0000 Reserved 0x4002 0400 0x4002 0000 0x4001 0000 0x4001 3400 0x4001 3400 0x4001 3400 0x4001 3400 0x4001 3400				/		Flash Interface
0x4002 1000 Rcc 0x4002 1000 Reserved 0x4002 0000 DMA 0x4002 0000 DMA 0x4001 3000 0x4001 3000 0x4001 3000 0x4001 3000 0x4001 3000 0x4001 3000 0x4001 3000 SPI 0x4001 3000 TiM1 0x4001 3000 TiM1 0x4001 3000 Reserved 0x4001 3000 TiM1 0x4001 3000 TiM1 0x4001 3000 Reserved 0x4001 1000 Reserved 0x4001 1000 Port D 0x4001 1000 Port C 0x4001 1000 Port A 0x4001 0000 Port A 0xE001 00000 Core Private 0xE000 0000 Core Private 0xE000 0000 Ox4001 0000 Reserved 0x4001 0000 0xE000 0000 Core Private 0x4000 7400 Reserved 0x4000 7400 PWR				/		Reserved
Accord Accord Accord DMA Accord				1		RCC
Ox4002 0000 DMA Reserved 0x4002 0000 Reserved 0x4001 3000 0x4001 3800 0x4001 3800 0x4001 3000 0x4001 3800 0x4001 3800 0x4001 3000 0x4001 3800 0x4001 3800 0x4001 3800 0x4001 3800				/	0x4002 1000	Reserved
0x4002 0000 Reserved 0x4001 3000 0x4001 3000 0x4001 3000 0x4001 3800 0x4001 3000 0x4001 3400 0x4001 3000 0x4001 3400 0x4001 3000 0x4001 3400 0x4001 3000 0x4001 3400 0x4001 3200 0x4001 3400 0x4001 3200 0x4001 3200 0x4001 3200 0x4001 3200 0x4001 2000 0x4001 200 0x4001 2000 0x4001 1400 0x4001 1400 0000 0x4001 1400 0x4001 1400 0x4001 1400 0x4001 1400 0x4001 1400 0x4001 1400 0x4001 0000 0x4001 1400 0x4001 1400 0x4001 1400 0x4001 0000 0x4001 1400 0x4001 0000 0x4001 1400 0x4001 0000 0x4001 0000 0x4000 00000 0x				1	0x4002 0400	DMA
Reserved 0x4001 3C00 0x4001 3800 0x4001 3400 0x4001 3400 0x4001 3000 USART 0x4001 3400 0x4001 3000 Reserved 0x4001 3400 0x4001 3000 Reserved 0x4001 2800 0x4001 2800 0x4001 2800 0x4001 2800 Reserved 0x4001 2800 0x4001 2800 0x4001 2800 Reserved 0x4001 1800 Port D 0x4001 1800 Port D 0x4001 0000 0x4001 1800 Port C Reserved 0x4001 0000 0x4001 0000 Reserved 0x4001 0000 Reserved 0xE000 0000 Core Private Peripherals 0x4001 0000 ExTI Reserved 0x4001 2800 0xE000 0000 0x4001 0000 Reserved 0x4001 0000 Port C 0xE000 0000 0xE000 0000 0x4001 0000 AFIO AFIO 0x4001 7920B 0x4000 7000 0x4000 7000 Reserved					0x4002 0000	DIMA
Reserved 0x4001 3800 Geserved 0x4001 3400 0x4001 3400 Reserved 0x4001 3200 TIM1 0x4001 2800 0x4001 2800 ADC 0x4001 2800 0x4001 2800 ADC 0x4001 2800 0x4001 2800 ADC 0x4001 1800 Port D Port D 0x4001 1000 Reserved 0x4001 1000 0x4001 0x00 Ort D Port D 0x4001 0x00 Port A ADC 0x4001 0x00 Port A ADC 0x4001 0x00 Ox4001 0x00 Port A 0x4001 0x00 0x4001 0x00 Port A 0x4001 0x00 0x4001 0x00 AFIO 0xE000 0x00 OxE000 0x600 0x4001 0x00 AFIO 0x5000 0x600 0x6000 0x600 0x4001 0x00 AFIO 0x4000 7400 PWR AFIO PWR (BOOT_1920B) 0x4000 7000 PWR PWR				/		Reserved
Reserved 0x4001 3400 SPI 0x4001 2000 0x4000 2000 <td></td> <td></td> <td></td> <td>/</td> <td></td> <td>USART</td>				/		USART
Note Note SPI Note Note Note Note Note Note Note Note Note Note				/	0x4001 3800	Reserved
Normal State Normal State<				1	0x4001 3400	SPI
Reserved 0x4001 2C00 0x4001 2800 0x4000 2800 0x4000 2800				1	0x4001 3000	
Normal System FLASH (BOOT_1920B) OxFFFF FFFFF OxFFFF FFFFF Ox4001 2800 Ox4001 2800 Ox4001 2800 Ox4001 2800 Ox4001 2800 Ox4001 2800 Ox4001 2800 Ox4001 2800 Ox4001 1800 Ox4001 1000 Ox4001 0800 Ox4001 0800 Reserved Option Bytes OxE010 0000 Core Private Peripherals Ox4001 0800 Port A Ox4001 0800 Ox4001 0800 Port A ADC Oxecol Occol Core Private Peripherals Ox4001 0800 Port A Ox4001 0400 AFIO AFIO System FLASH (BOOT_1920B) Ox4000 7000 PWR				/	0x4001 2C00	
Normal System FLASH (BOOT_1920B) OxFFFF FFFF OxFFFF FFFF OxFFFF FFFF Ox4001 2400 Reserved OxFFFF FFFF Reserved Ox4001 1800 Ox4001 1400 Port C Ox4001 Ox4001 0000 Ox4001 0000 Reserved Ox4001 0800 Port A System FLASH OxE000 0000 Core Private Peripherals Ox4000 7400 Reserved System FLASH Ox4000 7400 Ox4000 7400 PWR				/	0x4001 2800	
Reserved 0x4001 1800 Port D Option Bytes 0x4001 1000 Reserved 0x4001 0000 Vendor Bytes 0xE010 0000 Core Private Peripherals 0x4001 0400 AFIO System FLASH (BOOT_1920B) 0x4000 7000 0x4000 7000 Reserved				/	0x4001 2400	
Reserved 0x40011400 Port C Option Bytes 0xE010 0000 0x4001 0000 Reserved Vendor Bytes 0xE000 0000 Core Private Peripherals 0x4001 0400 EXTI System FLASH (BOOT_1920B) 0x4000 7000 Reserved 0x4000 7000		OxFFFF FFFFF		г <i>I</i>	0x4001 1800	
ReservedOx4001 0000 0x4001 0000ReservedReservedOption Bytes0xE010 0000Core Private Peripherals0x4001 0400 0x4001 0400 0x4001 0000EXTI EXTIReserved0xE000 0000Core Private Peripherals0x4000 7400ReservedSystem FLASH (BOOT_1920B)0x4000 7000Ox4000 7000Port A				/		
Reserved 0x4001 0000 Reserved Option Bytes 0xE010 0000 0x4001 0800 Port A Vendor Bytes 0xE000 0000 0x4001 0400 EXTI 0xE000 0000 0xE000 0000 0x4001 0400 EXTI System FLASH (BOOT_1920B) 0xE000 0000 0x4000 7400 Reserved			Reserved	/		
Option BytesOxE010 0000Core Private PeripheralsOx4001 0800Port AVendor Bytes0xE010 0000Core Private Peripherals0x4001 0400EXTI0x4001 00000xE000 00000x4000 0000AFIOSystem FLASH (BOOT_1920B)Vendor Type Distribution0x4000 7400PWR	Reserved			/		
Vendor Bytes 0xE010 0000 Core Private Peripherals 0x4001 0400 0x4001 0000 EXTI System FLASH (BOOT_1920B) 0xE000 0000 0x4001 0400 0x4000 7400 Reserved	Option Butos			/		Port A
Reserved OxE000 0000 Peripherals Ox4001 0000 AFIO System FLASH (BOOT_1920B) 0x4000 7400 0x4000 7400 PWR		OxE010 0000	Core Private			EXTI
Reserved Oxe000 0000 Reserved Reserved System FLASH (BOOT_1920B) 0x4000 7400 PWR	Vendor Bytes			/		AFIO
System FLASH (BOOT_1920B) PWR	Reserved	0×E000 0000				Reserved
	System FLASH			/	0x4000 7400	PWR
	(BOOT_1920B)	\backslash	Reserved		0x4000 7000	
Reserved		\backslash				Reserved
Reserved	Reserved					
0x4000 5800						120
0x4000 0000 Perpresas 0x4000 5400		0×4000 0000	Peripherals		0x4000 5400	
Code FLASH Reserved Reserved		\backslash	Reserved		0x4000 3400	Reserved
16KB \ 0x2000 0800 \ IWDG	16KB	0x2000 0800				IWDG
0x2000 0000 200 0000 WWDG		0x2000 0000	ZKB SKAIVI			WWDG
system memory depending on software	system memory depending on software		FLASH		0x4000 2C00	Reserved
configuration 0x0000 0000 0x4000 0400	configuration	0x0000 0000 [0x4000 0400	
4G linear address space 0x4000 0000 TIM2			4G linear address s	pace		TIM2

Ox1FFF FFFF

0x1FFF F840

0x1FFF F800

0x1FFF F7C0

0x1FFF F780

0x1FFF F000

0x0800 4000

0x0800 0000

0x0000 0000

Bus System Components

- Address Bus: Carries address information from the CPU to memory and peripherals. The address bus width determines the range of addresses that can be used in memory mapping.
- Data Bus: Transfers data between components based on the address specified on the address bus.
- Control Bus: Carries control signals that manage the read and write operations and other control functions.
- Functions:
 - ³ Memory Map Configuration
 - ³ Interconnects and Buses
 - 3 Address Decoding
 - Memory-Mapped I/O

Example:

On-Chip Memory and Peripheral Mapping: Within the bus system, the memory map determines the layout of on-chip memory, peripheral registers, and I/O devices. The bus system ensures that the CPU and other components access the correct addresses based on this map.

Address Map/Space Allocation

- Memory Address Space: Defines the range of addresses used to access different types of memory, including RAM, ROM, and external memory.
- Peripheral Address Space: Allocates addresses for various peripherals and I/O devices.

Memory Regions

- Boot Memory: Often used to store the bootloader or initial firmware.
- Code Memory: Stores executable code and program instructions.
- Data Memory: Used for storing variables, stack, and heap data.
- Peripheral Registers: Memory-mapped addresses used to control and interact with peripheral devices (e.g., timers, UARTs, GPIOs).

Memory Mapping Techniques:

- Flat Memory Model: All memory and peripherals are mapped into a single, linear address space.
- Segmented Memory Model: Memory and peripherals are divided into segments or blocks, each with a specific address range.

Memory Map Tables and Access Mechanisms

- Memory Map Table: A detailed table that outlines the starting address, size, and type of each memory region and peripheral.
- Memory-Mapped I/O: Peripherals are accessed by reading from or writing to specific memory addresses.
- Access Mechanism:
 - Linker Script: Define how different code and data sections are placed in memory.
 - Direct Memory Access (DMA): Allows peripherals to directly access memory without CPU intervention, reducing latency and improving performance.

Virtual Memory Mapping

- Virtual Address Space: Some SoCs use virtual memory systems to abstract physical memory addresses, providing flexibility in memory management.
- Virtual Address: It is an address of a program's memory space.
- Page Table: The table contains mappings from virtual addresses to physical addresses. Each entry in the page table corresponds to a "page" of memory.
- Page Size: Memory is divided into fixed-size pages, typically ranging from 2 KB to 16 KB (though sizes like 4 KB or 8 KB are common). The virtual address is split into two parts:
 - \succ Page Number: Identifies the page within the virtual address space.
 - \succ Offset: Identifies the specific location within the page.
- Translation: When a virtual address is used, the page number is looked up in the page table to find the corresponding physical page. The offset is then added to this physical page to get the final physical address.
- Physical Address: The final physical address points to the exact location in the system's memory (RAM) where the data is stored.

Contents

Overview of Embedded Systems and their Application Introduction to Micro-controller and Microprocessors Embedded System Architectures Memory Mapping and Bus Architecture **Embedded System Clock Tree** Embedded processor Instruction Set Architecture

Embedded System Clock Tree

- It is responsible for distributing clock signals throughout the system. It ensures that all components receive accurate and synchronized timing signals necessary for proper operation. Here's a detailed look at the clock tree and its role in embedded systems:
- Purpose of the Clock Tree:
- Timing Distribution: The clock tree distributes clock signals from a central oscillator or clock source to various components and subsystems within the embedded system.
- Synchronization: Ensures that different parts of the system operate in sync, which is crucial for reliable and predictable system performance.

• Components of a Clock Tree:

- Clock Source: The primary oscillator or clock generator that provides the initial clock signal.
- Clock Distributors: Distributes the clock to various parts of the system. This may include clock buffers, drivers, and multiplexers.
- Clock Dividers: Reduce the frequency of the clock signal to provide lower frequency clocks for different subsystems.
- Clock Multipliers: Increase the frequency of the clock signal if higher frequencies are required for certain components.
- Phase-Locked Loops (PLLs) and Delay-Locked Loops (DLLs): Used to generate stable, high-frequency clock signals from a lower-frequency reference clock, or to align the phase of clocks.
- Clock Gating: Mechanism to enable or disable the clock signal to specific parts of the system to save power when those parts are not in use.

Contents

Overview of Embedded Systems and their Application Introduction to Micro-controller and Microprocessors Embedded System Architectures Memory Mapping and Bus Architecture Embedded System Clock Tree Embedded System Programming Range of Applications

Introduction to Embedded C Programming

Embedded C

- Embedded C and standard C (often just called "C") are both programming languages used to write software, but they differ in their target environments, constraints, and some aspects of functionality.
- Embedded C can be considered as the subset of C language. It uses same core syntax as C.
- Embedded C programs need cross-compliers to compile and generate HEX code
- Embedded C is designed for embedded system programming with specific constraints, hardware interaction requirements, and specialized development tools.

Introduction to Embedded C Programming

Introduction to Embedded C Programming

- Target Hardware Architecture:
 - ³ Processor and Specifications:
 - ³ Program Memory and Data Memory Size:
 - Peripherals and Components
- Memory Mapping
- Software Development
 - ³ GCC Compiler: Compiler: riscv32-unknown-elf-gcc or riscv64-unknown-elf-gcc.
 - ³ Debugger: GDB with RISC-V support.
 - ³ ELF Loader: OpenOCD or RISC-V Proxy Kernel.
- Stress Checking and Profiling Tools for RISC-V:
 - ³ RISC-V Performance Monitor or Perf.

Requirements: Basic and Complex

Criterion	Low	Medium	High
Processor	4- or 8-bit	16-bit	32- or 64-bit
Memory	< 64 KB	64 KB to 1 MB	> 1 MB
Development cost	< \$100,000	\$100,000 to \$1,000,000	> \$1,000,000
Production cost	< \$10	\$10 to \$1,000	> \$1,000
Number of units	< 100	100 to 10,000	> 10,000
Power consumption	> 10 mW/MIPS	1 to 10 mW/MIPS	< 1 mW/MIPS
Lifetime	Days, weeks, or months	Years	Decades
Reliability	May occasionally fail	Must work reliably	Must be fail-proof

Embedded System Schematic and Memory Mapping

0xFFFFFFFF

0x51000000

0x50000000

0x44000000

0x40000000

0x0800030F

0x08000300

0x04000000

0x00000000

Unused
Flash Memory (16 MB)
Unused
PXA255 Peripherals
Unused
SMSC Ethernet Controller
Unused
SDRAM (64 MB)

SW Development Environment

Compiler Options

- riscv32-unknown-elf-gcc //
 - -march=rv32imac // Architecture and ISA Extensions:
 - -mabi=ilp32 // ABI (Application Binary Interface: Int, long, pointer): -O2 // Optimization Levels:
 - -mtune=sifive-e31 // Code Genartion for specific RISCV core
 - -g mhard-float
- -T linker_script.ld

 -I/path/to/include
 - -L/path/to/li
 - -o output.elf
 - source.c
 - -Im
- -funroll-loops

- // Debugging and Profiling -pg // Floating Point Options: Hard/Soft Floting point:
 - // -T: Specify a linker script.
 - // Include Paths and Libraries
 - //
- // Output file
 - // source file
 - // -Im (math library)
 - // Loop Unrolling option

Define Memory Address

/* Timer Registers */
#define TIMER_0_MATCH_REG
#define TIMER_1_MATCH_REG
#define TIMER_2_MATCH_REG
#define TIMER_3_MATCH_REG
#define TIMER_COUNT_REG
#define TIMER_STATUS_REG
#define TIMER_INT_ENABLE_REG

(*((uint32_t volatile *)0x40A00000)) (*((uint32_t volatile *)0x40A00004)) (*((uint32_t volatile *)0x40A00008)) (*((uint32_t volatile *)0x40A0000C)) (*((uint32_t volatile *)0x40A00010)) (*((uint32_t volatile *)0x40A00014)) (*((uint32_t volatile *)0x40A0001C))

/* Timer Interrupt Enable Register Bit Descriptions */

#define	TIMER_O_INTEN	(0x01
#define	TIMER_1_INTEN	(0x02
#define	TIMER_2_INTEN	(0x04
#define	TIMER_3_INTEN	(0x08

/* Timer Status Register Bit Descriptions */
#define TIMER_0_MATCH (0x01)
#define TIMER_1_MATCH (0x02)
#define TIMER_2_MATCH (0x04)
#define TIMER 3 MATCH (0x08)

/* Interrupt Controller Registers */
#define INTERRUPT_PENDING_REG (*((uint32_
#define INTERRUPT_ENABLE_REG (*((uint32_
#define INTERRUPT TYPE REG (*((uint32_

(*((uint32_t volatile *)0x40D00000))
(*((uint32_t volatile *)0x40D00004)))
(*((uint32_t volatile *)0x40D00008))

Bit Descriptions */
(0x00000100)
(0x00400000)
(0x0400000)
(0x0800000)
(0x1000000)
(0x2000000)

/* General Purpose I/O (GPIO) Registers */

#define GPIO_0_LEVEL_REG #define GPIO_1_LEVEL_REG #define GPIO_2_LEVEL_REG #define GPIO_0_DIRECTION_REG #define GPIO_1_DIRECTION_REG #define GPIO_2_DIRECTION_REG #define GPIO_0_SET_REG #define GPIO_1_SET_REG #define GPIO_2_SET_REG #define GPIO_0_CLEAR_REG #define GPIO_1_CLEAR_REG #define GPIO_2_CLEAR_REG #define GPIO_0_FUNC_LO_REG #define GPIO_0_FUNC_HI_REG (*((uint32_t volatile *)0x40E00000)) (*((uint32_t volatile *)0x40E00004)) (*((uint32_t volatile *)0x40E00008)) (*((uint32_t volatile *)0x40E0000C)) (*((uint32_t volatile *)0x40E00010)) (*((uint32_t volatile *)0x40E00014)) (*((uint32_t volatile *)0x40E00018)) (*((uint32_t volatile *)0x40E0001C)) (*((uint32_t volatile *)0x40E00020)) (*((uint32_t volatile *)0x40E00024)) (*((uint32_t volatile *)0x40E00028)) (*((uint32_t volatile *)0x40E00028)) (*((uint32_t volatile *)0x40E0002C)) (*((uint32_t volatile *)0x40E00054)) (*((uint32_t volatile *)0x40E00054)) (*((uint32_t volatile *)0x40E00054))

Embedded System Programming and Memory Layout

- Understanding C memory layout is crucial for debugging, optimizing performance, security and interfacing with low-level systems.
- Text (Code) Segment:
- Data Segment:
- BSS Segment:
- Heap Segment:
- Stack Segment:

C main	n.c ×			€> ~ €§
C mai	in.c > 🕼 global_bss			
1	<pre>#include <stdio.h></stdio.h></pre>			
2	<pre>#include <stdlib.h></stdlib.h></pre>			
з				
4	// Global variable in the data segment			
5	int global_data = 10;	High Address		
6	// Uninitialized global variable in the BSS segment		Stack	
8	int global_bss;			
9				
10	<pre>int main() {</pre>		\vee	
11	// Local variable in the stack segment			
12	<pre>int stack_var = 5;</pre>		*	
13			T	
14	// Dynamically allocated memory in the heap segment			1
15	<pre>int* heap_var = (int*)malloc(sizeof(int));</pre>	\rightarrow	Heap	
16	<pre>*heap_var = 7;</pre>			.bss
17			uninitialised data	- CR. H. H
18	// Code segment			,data
19	<pre>printf("Global Data: %d\n", global_data);</pre>	2	Initialised data	
20	<pre>printf("Stack Variable: %d\n", stack_var); printf("Heap Variable: %d\n", *heap_var);</pre>			text
22	printt(heap variable. %d(n', 'heap_var'),		Instructions	
23	// Free dynamically allocated memory	Low Address		-
24	free(heap_var);			
25				
26	return 0;			
27	}			

• Text (Code), Data and BSS Segment:

- The text segment contains the executable code of the program. It is read-only and holds the instructions for the program.
- The data segment contains initialized global and static variables. In the example code, global_data is an initialized global variable with value 10.
- The BSS (Block Started by Symbol) segment contains uninitialized global and static variables. The BSS segment is set to zero during program startup. In the example code, global_bss variable will be added to the bss section by linker.
- The Text, Data, and BSS segments collectively form the static part of the program that contains fixedsized instructions and data that persists throughout its execution. These should be kept in a non-volatile memory to ensure successful execution of code following a power cycle.
- You can use the size utility that comes with the compiler to get the size of the executable. Below is the output for the example code:
- text data bss dec hex filename

• 1585 600 8 2193 891 main.out

Heap and Stack Segments

- Heap Segment:
- The heap segment is used for dynamic memory allocation during the program's runtime. In the example, we allocate memory for an integer using malloc(), and heap_var points to the newly allocated memory location.
- It's important to free the allocated memory after it is no longer needed.
- Over time, repeated memory allocation without freeing memory can cause the program's memory usage to grow unnecessarily leading to poor performance and runtime allocation failures.
- Stack Segment:
- The stack segment is used for managing function calls, local variables, and function call frames. In the example, stack_var is a local variable that will be allotted on the stack during the execution of the main() function.
- The stack and heap memory share the dynamic memory area of the program. The stack typically starts from the end address of the memory and grows downward, while the heap starts from the end of the BSS segment.

Steps: Code Compilation to Execution

- riscv32-unknown-elf-gcc -march=rv32i -S -o riscv.s ./code.c
- riscv32-unknown-elf-as -march=rv32i -S -o riscv.o ./riscv.s
- riscv32-unknown-elf-as -march=rv32i -o riscv.o ./riscv.s
- riscv32-unknown-elf-ld -o riscv ./riscv.o
- riscv32-unknown-elf-objcopy -O binary --only-section=.text riscv instr.mem
- riscv32-unknown-elf-objcopy -O binary --only-section=.data riscv data.mem
- riscv32-unknown-elf-objdump -D -b binary -m riscv:rv32i instr.mem

Debugging

- # Compile with debugging information
- riscv64-unknown-elf-gcc -march=rv64gc -mabi=lp64d -g -o my_program ./for_loop.c
- # Start GDB and load program
- riscv64-unknown-elf-gdb my_program
- # Run program in GDB
- (gdb) target sim
 - ³ (gdb) break linenumber
 - ³ (gdb) print variable_name

Profiling

- # Compile for performance analysis with perf
- riscv32-unknown-elf-gcc -march=rv32i -o my_program ./code.c
- # Run program with QEMU and collect profiling data
- qemu-riscv32 -cpu rv32, my_program -perf my_program
- # Analyze profiling data with perf
- // Not yet configured in cluster

Stress Testing

- riscv32-unknown-elf-gcc -march=rv32i -o stress-ng stress-ng.c
- # Run stress tests with stress-ng
- qemu-riscv32 -L /path/to/riscv/rootfs ./stress-ng --cpu 4 --io 2 --vm 2 --vmbytes 128M --timeout 60s
- Custom Stress Checking
- riscv32-unknown-elf-gcc -march=rv32i -o stress_test ./stress_test.c
- # Run custom stress test program
- qemu-riscv32 ./stress_test

Performance Analysis

- riscv32-unknown-elf-gcc -march=rv32i -o my_program ./code.c
- qemu-riscv32 -L /path/to/riscv/rootfs valgrind -tool=cachegrind ./my_program
- # Run program with QEMU for performance analysis
- qemu-riscv32 -d in_asm,cpu ./my_program > qemu_log.txt
- # Analyze QEMU log
- grep -E 'IN:|CPU:|Cycle:' qemu_log.txt

Testing Spike

/opt/riscv-gnu32/bin/spike --isa=RV32IMAC -d /opt/riscv/riscv32-unknown-elf/bin/pk ./heap32 until reg 0 pc 0x1000 # Stop execution when program counter of core 0 reaches 0x1000 mem 0 0x80000000 # View memory content at address 0x80000000 for core 0 freg 0 f0 # Display floating-point register f0 for core 0 run 1000 # Resume execution for 1000 instructions reg 0 # View all registers for core 0 pc 0 # View the program counter of core 0 until pc 0 0x1000 # Stop execution when PC of core 0 reaches address 0x1000 while reg 0 sp 0x80000000 # Continue running while stack pointer (sp) of core 0 is 0x80000000 dump 0x8000000 0x80001000 # Dump memory from address 0x80000000 to 0x80001000 quit mtime

mtimecmp 0

QEMU Debuging

- qemu-system-riscv32 -gdb tcp::1234 -S -kernel ./hello32.o
- riscv32-unknown-elf-gdb ./hello32.o #Sperate window open
- Debug Commands
- (gdb) target remote :1234 # Connect to the QEMU GDB server (gdb) load # Load the binary into QEMU (gdb) b main # Set a breakpoint at the main function # Continue execution until the breakpoint is hit (gdb) c (gdb) info reg # Display registers (gdb) step # Step through code line by line (gdb) next # Step over functions # Continue execution until the next breakpoint (gdb) continue (gdb) quit # Exit GDB

Profiling QEMU

- qemu-system-riscv32 -d exec,int -kernel ./hello32.o
- perf record -e cycles -a -- qemu-system-riscv32 -kernel ./hello32.o
- perf report

Hands-on Embedded C for RISCV