Advanced Techniques for
Performance Optimization and

Machine Learning on RISC-V
Platforms

Contents

*Design and implement programming techniques that utilizes multiple cores in
RISC-V platforms for enhanced performance.

*Design and implement machine learning algorithms and neural networks on
RISC-V platforms for edge computing.

Multi-Core Programming on RISC-V

e Overview of Multi-Core Architecture
o Definition of multi-core processors
o Benefits: Improved performance, parallelism, and efficiency
e Programming Techniques for Multi-Core Utilization
o Parallel Programming Models:
B Threads and Parallel Libraries (e.g., POSIX Threads)
B Message Passing Interface (MPI) for distributed systems
o Concurrency Control:
B Synchronization mechanisms: Mutexes, Semaphores
® Avoiding common pitfalls: Race conditions, Deadlocks

Example: Multi-Core Programming on RISC-V

e Sample Code: Basic Thread Creation |l ettt
#include <stdio.h>
e Explanation: Creates a thread to * threadFunction(* arg)
execute a simple function concurrently. printf(“Hello from threadi\n”);
e Performance Considerations: '
a. Load balancing
b. Minimizing contention main()

thread;
pthread_create(&thread, , threadFunction,
pthread_join(thread,

.
I‘-_ i) .

Machine Learning on RISC-V

e Overview of Machine Learning and Edge Computing

o Importance of ML algorithms in edge devices

o Benefits of running ML models locally: Reduced latency, improved privacy
e Challenges on RISC-V:

o Limited resources compared to traditional CPUs

o Limited Support of Python and C++ Libraries.

o Have to write codes from scratch most of the time

o Optimizing algorithms for performance and power efficiency

1. Simple MLP Implementation:

This code implements a basic Multi-Layer Perceptron (MLP) with one hidden layer.
Key components:

eClass SimpleNeuralNetwork: Encapsulates the neural network structure and operations.

e Constructor: Initializes weights and biases randomly.

eforward method: Performs forward propagation, computing activations through the network.
etrain method: Implements backpropagation to update weights and biases.

emain function: Demonstrates usage by training the network on XOR problem.

Features:

eUses sigmoid activation function.
e|mplements a 2-4-1 network architecture (2 input neurons, 4 hidden neurons, 1 output neuron).
eTrains for 10,000 epochs on XOR data.

2. Diabetes Dataset MLP Implementation:

This code presents a more advanced MLP capable of handling the diabetes dataset.
Key components:

oClass DiabetesNeuralNetwork: Implements a flexible MLP with customizable layer sizes.
eConstructor: Allows specification of layer sizes and learning rate.

eforward method: Performs forward propagation through multiple layers.

etrain method: Implements backpropagation for multi-layer networks.

e/oad csv function: Reads and parses the diabetes dataset from a CSV file.

emain function: Demonstrates data loading, normalization, training, and testing.

Features:

eF-lexible network architecture (8-16-8-1 in the example).
eData normalization to improve training.

eTrains on the entire dataset for 1000 epochs.
eCalculates and reports accuracy on the training set.

This implementation showcases:

1Handling real-world datasets.

2Data preprocessing (normalization).

3Flexible network architecture.

4Basic model evaluation (accuracy calculation).

	Advanced Techniques for Performance Optimization and Machine Learning on RISC-V Platforms
	Contents
	Multi-Core Programming on RISC-V
	Example: Multi-Core Programming on RISC-V
	Machine Learning on RISC-V
	Simple MLP Implementation:
	Diabetes Dataset MLP Implementation:

