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Ripes simulator

Introduction:
• Ripes is a graphical RISC-V simulator aimed at teaching and understanding computer architecture and 

assembly programming.

• Developed by Mads Sig Agerbæk.

Key Features:
• Graphical Interface: Easy-to-use graphical interface to visualize pipeline stages and register values.

• Support for RISC-V ISA: Full support for RV32I and extensions.

• Interactive Simulation: Step through execution cycles, view data flow, and track instruction progress.

• Educational Focus: Ideal for students learning about computer architecture, assembly language, and 
the RISC-V ISA.

https://github.com/mortbopet/Ripes
https://github.com/mortbopet/Ripes


Setting up Ripes simulator

Download and Installation:

• Visit the Ripes GitHub page to download the latest version.

     Link: https://github.com/mortbopet/Ripes/releases
Initial Setup:
• Launch Ripes and select the RISC-V configuration (e.g., RV32I).
• Familiarize yourself with the main interface: code editor, register view, memory 

view, and pipeline diagram.

Online Ripes simulator: 

      Write ripes.me in the google search bar and it will give you free online access to 

ripes.

https://github.com/mortbopet/Ripes
https://github.com/mortbopet/Ripes


Ripes simulator
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Basics Assembly Structure in Ripes
Creating a New Program:
• Open the code editor and start a new assembly file.
• Define the .data and .text sections.
• Write the entry point with the _start label.

Example:
.data 
.text 
.globl_start 
_start: 
# Your instructions here



Initializing Registers in Ripes
Loading Immediate Values:
• Initialization is the process of assigning a value to the Variable.

• Use the li (Load) instruction to initialize registers with specific values.

Example:

li t0, 10 # Load immediate value 10 into register t0 

lui t3, 0x12345 #load 20 bits as a most significant bits in 32 bit register by lui



Declaring Registers in Ripes
Using Registers:
• Declaration tells the compiler about the existence of an entity in the program and 

its location.
• Understand the different types of registers (temporary t0-t6, saved s0-s11, 

argument a0-a7).

Example:

lw t0, s0 #load s0 register into t0 register
lw t6, s11 #load s11 register into t6 register
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Logic Operations on Registers in Ripes
NOT Operation:
li a0, 5 
not a1, a0 #(not): Inverts all the bits of the operand
AND Operation:
li a0, 9 li a1, 5 
and a2, a1, a0 #(and): Sets each bit to 1 if both corresponding bits are 1. 
OR Operation:
li a0, 9 li a1, 5 
or a2, a1, a0 #(or): Sets each bit to 1 if at least one corresponding bit is 1
XOR Operation:
li a0, 9 li a1, 5 
xor a2, a1, a0 #(xor): Sets each bit to 1 if only one of the corresponding bits is 1.
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Arithmetic Operations in Ripes
Addition:
li a0, 10 
li a1, 20 
add a2, a0, a1 # a2 = a0 + a1 
Subtraction:
li a0, 20 
li a1, 10 
sub a2, a0, a1 # a2 = a0 - a1 
Multiplication (using shifts):
li a0, 9 
li a1, 1 
sll t0, a0, a1 
# Logical shift left a0 by a1 positions 
(9x2^1=18)

Division (using shifts):
li a0, 16 
li a1,  3
srl t0, a0, a1 
# Logical shift right a0 by a1 positions 
(16x2^3=2)
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Multiplication with the Support of Addition (pseudo code)
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Division with the Support of Subtraction (pseudo code)
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Memory Access (Basic Concept)

Accessing memory beyond the registers involves using load and store instructions. This is typically done using lw (load word) 
and sw (store word).

Example:

.data 
val1: .word 10 
val2: .word 20 
.text 
.globl _start
 _start: 
lw t0, val1 # Load the value at address val1 into t0 
lw t1, val2 # Load the value at address val2 into t1 
add t2, t0, t1 # Add the values in t0 and t1 
sw t2, 0x100(t0) # Store the result at a specific memory address
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External Peripheral Access (Basic Concept)

Interfacing with peripherals (like timers, keyboards, displays) typically involves memory-mapped 

I/O, where peripheral registers are accessed via specific memory addresses.

Accessing Memory Mapped IO: Interact with peripherals via specific memory addresses.

Example:

li t0, 0x10008000 # Address of peripheral 

li t1, 1 # Data to write 

sw t1, 0(t0) # Write data to peripheral
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