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Ripes simulator

Introduction:
* Ripes is a graphical RISC-V simulator aimed at teaching and understanding computer architecture and
assembly programming.

* Developed by Mads Sig Agerbek.

Key Features:
* Graphical Interface: Easy-to-use graphical interface to visualize pipeline stages and register values.

* Support for RISC-V ISA: Full support for RV32I and extensions.
* Interactive Simulation: Step through execution cycles, view data flow, and track instruction progress.

* Educational Focus: Ideal for students learning about computer architecture, assembly language, and
the RISC-V ISA.


https://github.com/mortbopet/Ripes
https://github.com/mortbopet/Ripes

Setting up Ripes simulator

Download and Installation:

* Visit the Ripes GitHub page to download the latest version.

Link: https://github.com/mortbopet/Ripes/releases

Initial Setup:

* Launch Ripes and select the RISC-V configuration (e.g., RV32I).

* Familiarize yourself with the main interface: code editor, register view, memory
view, and pipeline diagram.

Online Ripes simulator:

Write ripes.me in the google search bar and it will give you free online access to

ripes.


https://github.com/mortbopet/Ripes
https://github.com/mortbopet/Ripes
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Basics Assembly Structure in Ripes

Creating a New Program:

* Open the code editor and start a new assembly file.
* Define the .data and .text sections.

* Write the entry point with the _start label.

Example:

.data

text

.globl_start

_start:

# Your instructions here



Initializing Registers in Ripes

Loading Immediate Values:
* Initialization is the process of assigning a value to the Variable.

* Use the li (Load) instruction to initialize registers with specific values.

Example:

li t0, 10 # Load immediate value 10 into register t0

lui t3, 0x12345 #load 20 bits as a most significant bits in 32 bit register by lui



Declaring Registers in Ripes

Using Registers:

* Declaration tells the compiler about the existence of an entity in the program and
its location.

* Understand the different types of registers (temporary t0-t6, saved s0-s11,
argument a0-a7).

Example:

lw t0, sO #load sO register into tO register
lw 16, s11 #load s11 register into t6 register
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Logic Operations on Registers in Ripes

NOT Operation:

li a0, 5

not al, a0 #(not): Inverts all the bits of the operand

AND Operation:

lia0,91ial,5

and a2, al, a0 #(and): Sets each bit to 1 if both corresponding bits are 1.
OR Operation:

lia0,91ial,5

or a2, al, a0 #(or): Sets each bit to 1 if at least one corresponding bit is 1
XOR Operation:

lia0,91ial,5

xor a2, al, a0 #(xor): Sets each bit to 1 if only one of the corresponding bits is 1.
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Arithmetic Operations in Ripes

Addition:

li a0, 10

lial, 20

add a2, a0, al # a2 =a0 + al
Subtraction:

li a0, 20

lial, 10

sub a2, a0, al #a2 =a0 - al
Multiplication (using shifts):
li a0, 9

lial, 1

sll t0, a0, al

# Logical shift left a0 by al positions
(9x2/1=18)

Division (using shifts):

li a0, 16

lial, 3

srl t0, a0, al

# Logical shift right a0 by al positions
(16x2/3=2)
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Multiplication with the Support of Addition (pseudo code)

- ™

Start

¥

Initilization

reg0O = input varl
regl= input varz2
reg2 — output result
reg3 = counter = 0O
A

ul_loop
iT (counter==
wvarz2)

No result=result+wvarl
couter=counter+1

exit call
a7Ff=93

ecall
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Division with the Support of Subtraction (pseudo code)

]
J,

Initilization
reg0 = dividend= input var1
reg1= divisor= input var2

reg2 = quotient register= 0
reg3 = resuli register=10

division_loop Mo end_division
if (a0 ==at) esult = quotien
subtract_divisor exit call
sub = al - al ar=93
quotient=quotient+1 ecall
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Memory Access (Basic Concept)

Accessing memory beyond the registers involves using load and store instructions. This is typically done using lw (load word)
and sw (store word).

Example:

.data

vall: .word 10

val2: .word 20

text

.globl _start

_start:

Iw t0, vall # Load the value at address vall into t0

Iw t1, val2 # Load the value at address val2 into t1

add t2, tO, t1 # Add the values in t0 and t1

sw t2, 0x100(t0) # Store the result at a specific memory address
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External Peripheral Access (Basic Concept)

Interfacing with peripherals (like timers, keyboards, displays) typically involves memory-mapped

I/O, where peripheral registers are accessed via specific memory addresses.
Accessing Memory Mapped 10: Interact with peripherals via specific memory addresses.

Example:
li t0, 0x10008000 # Address of peripheral
li t1, 1 # Data to write

sw t1, 0(t0) # Write data to peripheral
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