
RISCV Assembly Programming

Contents

• Ripes simulator
• Programming
 Basics Assembly Structure
 Declaring Registers
 Initialing Registers
 Logic Operating on Registers
 Arithmetic Operations
 Special Function API (Multiplication with the Support of Addition)
 Memory Access (Basic Concept)
 External Peripheral Access (Basic Concept)

Ripes simulator

Introduction:
• Ripes is a graphical RISC-V simulator aimed at teaching and understanding computer architecture and

assembly programming.

• Developed by Mads Sig Agerbæk.

Key Features:
• Graphical Interface: Easy-to-use graphical interface to visualize pipeline stages and register values.

• Support for RISC-V ISA: Full support for RV32I and extensions.

• Interactive Simulation: Step through execution cycles, view data flow, and track instruction progress.

• Educational Focus: Ideal for students learning about computer architecture, assembly language, and
the RISC-V ISA.

https://github.com/mortbopet/Ripes
https://github.com/mortbopet/Ripes

Setting up Ripes simulator

Download and Installation:

• Visit the Ripes GitHub page to download the latest version.

 Link: https://github.com/mortbopet/Ripes/releases
Initial Setup:
• Launch Ripes and select the RISC-V configuration (e.g., RV32I).
• Familiarize yourself with the main interface: code editor, register view, memory

view, and pipeline diagram.

Online Ripes simulator:

 Write ripes.me in the google search bar and it will give you free online access to

ripes.

https://github.com/mortbopet/Ripes
https://github.com/mortbopet/Ripes

Ripes simulator

Contents

• Ripes simulator
• Programming
 Basics Assembly Structure
 Declaring Registers
 Initialing Registers
 Logic Operating on Registers
 Arithmetic Operations
 Special Function API (Multiplication with the Support of Addition)
 Memory Access (Basic Concept)
 External Peripheral Access (Basic Concept)

Basics Assembly Structure in Ripes
Creating a New Program:
• Open the code editor and start a new assembly file.
• Define the .data and .text sections.
• Write the entry point with the _start label.

Example:
.data
.text
.globl_start
_start:
Your instructions here

Initializing Registers in Ripes
Loading Immediate Values:
• Initialization is the process of assigning a value to the Variable.

• Use the li (Load) instruction to initialize registers with specific values.

Example:

li t0, 10 # Load immediate value 10 into register t0

lui t3, 0x12345 #load 20 bits as a most significant bits in 32 bit register by lui

Declaring Registers in Ripes
Using Registers:
• Declaration tells the compiler about the existence of an entity in the program and

its location.
• Understand the different types of registers (temporary t0-t6, saved s0-s11,

argument a0-a7).

Example:

lw t0, s0 #load s0 register into t0 register
lw t6, s11 #load s11 register into t6 register

Contents

• Ripes simulator
• Programming
 Basics Assembly Structure
 Declaring Registers
 Initialing Registers
 Logic Operating on Registers
 Arithmetic Operations
 Special Function API (Multiplication with the Support of Addition)
 Memory Access (Basic Concept)
 External Peripheral Access (Basic Concept)

Logic Operations on Registers in Ripes
NOT Operation:
li a0, 5
not a1, a0 #(not): Inverts all the bits of the operand
AND Operation:
li a0, 9 li a1, 5
and a2, a1, a0 #(and): Sets each bit to 1 if both corresponding bits are 1.
OR Operation:
li a0, 9 li a1, 5
or a2, a1, a0 #(or): Sets each bit to 1 if at least one corresponding bit is 1
XOR Operation:
li a0, 9 li a1, 5
xor a2, a1, a0 #(xor): Sets each bit to 1 if only one of the corresponding bits is 1.

Contents

• Ripes simulator
• Programming
 Basics Assembly Structure
 Declaring Registers
 Initialing Registers
 Logic Operating on Registers
 Arithmetic Operations
 Special Function API (Multiplication with the Support of Addition)
 Division with the Support of Subtraction
 Memory Access (Basic Concept)
 External Peripheral Access (Basic Concept)

Arithmetic Operations in Ripes
Addition:
li a0, 10
li a1, 20
add a2, a0, a1 # a2 = a0 + a1
Subtraction:
li a0, 20
li a1, 10
sub a2, a0, a1 # a2 = a0 - a1
Multiplication (using shifts):
li a0, 9
li a1, 1
sll t0, a0, a1
Logical shift left a0 by a1 positions
(9x2^1=18)

Division (using shifts):
li a0, 16
li a1, 3
srl t0, a0, a1
Logical shift right a0 by a1 positions
(16x2^3=2)

Contents

• Ripes simulator
• Programming
 Basics Assembly Structure
 Declaring Registers
 Initialing Registers
 Logic Operating on Registers
 Arithmetic Operations
 Special Function API (Multiplication with the Support of Addition)
 Division with the Support of Subtraction
 External Memory Access (Basic Concept)
 External Peripheral Access (Basic Concept)

Multiplication with the Support of Addition (pseudo code)

Contents

• Ripes simulator
• Programming
 Basics Assembly Structure
 Declaring Registers
 Initialing Registers
 Logic Operating on Registers
 Arithmetic Operations
 Special Function API (Multiplication with the Support of Addition)
 Division with the Support of Subtraction
 Memory Access (Basic Concept)
 External Peripheral Access (Basic Concept)

Division with the Support of Subtraction (pseudo code)

Contents

• Ripes simulator
• Programming
 Basics Assembly Structure
 Declaring Registers
 Initialing Registers
 Logic Operating on Registers
 Arithmetic Operations
 Special Function API (Multiplication with the Support of Addition)
 Division with the Support of Subtraction
 Memory Access (Basic Concept)
 External Peripheral Access (Basic Concept)

Memory Access (Basic Concept)

Accessing memory beyond the registers involves using load and store instructions. This is typically done using lw (load word)
and sw (store word).

Example:

.data
val1: .word 10
val2: .word 20
.text
.globl _start
 _start:
lw t0, val1 # Load the value at address val1 into t0
lw t1, val2 # Load the value at address val2 into t1
add t2, t0, t1 # Add the values in t0 and t1
sw t2, 0x100(t0) # Store the result at a specific memory address

Contents

• Ripes simulator
• Programming
 Basics Assembly Structure
 Declaring Registers
 Initialing Registers
 Logic Operating on Registers
 Arithmetic Operations
 Special Function API (Multiplication with the Support of Addition)
 Division with the Support of Subtraction
 Memory Access (Basic Concept)
 External Peripheral Access (Basic Concept)

External Peripheral Access (Basic Concept)

Interfacing with peripherals (like timers, keyboards, displays) typically involves memory-mapped

I/O, where peripheral registers are accessed via specific memory addresses.

Accessing Memory Mapped IO: Interact with peripherals via specific memory addresses.

Example:

li t0, 0x10008000 # Address of peripheral

li t1, 1 # Data to write

sw t1, 0(t0) # Write data to peripheral

	RISCV Assembly Programming
	Contents
	Ripes simulator
	Setting up Ripes simulator
	Ripes simulator (2)
	Contents (2)
	Basics Assembly Structure in Ripes
	Initializing Registers in Ripes
	Declaring Registers in Ripes
	Contents (3)
	Logic Operations on Registers in Ripes
	Contents (4)
	Arithmetic Operations in Ripes
	Contents (5)
	Multiplication with the Support of Addition
	Contents (6)
	Division with the Support of Subtraction
	Contents (7)
	Memory Access (Basic Concept)
	Contents (8)
	External Peripheral Access (Basic Concept)

