RISCYV Assembly Programming

Contents

* Ripes simulator
* Programming
} Basics Assembly Structure
} Declaring Registers
} Initialing Registers
} Logic Operating on Registers
} Arithmetic Operations
} Special Function API (Multiplication with the Support of Addition)
} Memory Access (Basic Concept)

} External Peripheral Access (Basic Concept)

Ripes simulator

Introduction:
* Ripes is a graphical RISC-V simulator aimed at teaching and understanding computer architecture and
assembly programming.

* Developed by Mads Sig Agerbek.

Key Features:
* Graphical Interface: Easy-to-use graphical interface to visualize pipeline stages and register values.

* Support for RISC-V ISA: Full support for RV32I and extensions.
* Interactive Simulation: Step through execution cycles, view data flow, and track instruction progress.

* Educational Focus: Ideal for students learning about computer architecture, assembly language, and
the RISC-V ISA.

https://github.com/mortbopet/Ripes
https://github.com/mortbopet/Ripes

Setting up Ripes simulator

Download and Installation:

* Visit the Ripes GitHub page to download the latest version.

Link: https://github.com/mortbopet/Ripes/releases

Initial Setup:

* Launch Ripes and select the RISC-V configuration (e.g., RV32I).

* Familiarize yourself with the main interface: code editor, register view, memory
view, and pipeline diagram.

Online Ripes simulator:

Write ripes.me in the google search bar and it will give you free online access to

ripes.

https://github.com/mortbopet/Ripes
https://github.com/mortbopet/Ripes

Apstaton it | g

Ripes simulator

Select Processor

edefine LEDMATRIX.

sendif /4 RIPES_ID.

Each LED maps to a 24-bit register storing an RGB colar value, with B stored in

#define LED MATRIX B BASE (9x(0000000)
exdiac)

#define LEDMATRIX B SIZE (s
#define LED_NATRLI_O_NIOTH (3

0x23)
ox19)

fine LED_MATRIX_B_HEIGHT (0¥

0100803000
0100000000
Qi
0110000080
0200000000
0100000000
0:00000000
2160803000
0100000000
2160803000
[
2100000080
0100000000
2100000000

X File Edit View Help
| B0) pwoms &Y
* RISC-V Name: |5-stage processor | =
~ 32-bit sfo Source code Input type: ® Assembly Executable code View mode: Binary « Disassembled * @ gpr
" . | 1
Single-cycle processor ISA: |Rv32I " b v mesis i e
5-stage processor w/o forward... | 2 & 00200583
5-sta ISA Exts. M © : 3ot 8 B0bs5E1S sl 12 14 111
ge processor w/o hazard ... PR _
- p e 5 lial, 2 1 m
S-Stage processor w/o forward... | | ayout | Standard 1 S e— 1 n
5-stage processor | 1 2 sp
6-stage dual-issue processor A 5-stage in-order processor | a g
» 64-bit with hazard detection/ | Console Memery PR
MIPS Description: elimination and forwardi | ?
1 Address Word Byte0 Bytel Byte2 Bytel * ;5 10
1 X%t
Register initialization 1 LA
. ox0e000808 udb55613 [133] 56 s i @ s0
- 1
7 | x000RIR04 el 200581 (] 05 5] [0
1 1
|x2 (sp) ~||ox7FfiFFO |[X] S
B i 00000808 Duddones1 [1ik] (2]] g %10 a0
[x3 (gp) - ||0x10000000 [[X] = | a a
— | a2 a2
(+] 1 s a3 a3
g N |
Cancel ‘ | Display type: |Hex * Go to register: * | Go to section: - Display type:
[\‘
File Edit View Help File Edit View Help
B o< > powms 2D g o< > plwooms D
Memary viewer Memory map Devices LED Matrix 0
Address Word Byte 0 Byte 1 Byte 2 Byte3 ° Name Size Range m =
text 12 0x00000008 - Ex00008000
Switches the least significant byte.
data| © axtsanoms - sxarrrrrer e yte offset of the LED at coordinates (x, y) Is
bss 0 0x11000000 - Ox101111(T 7 offset = (y + x*N_LEDS_ROW) * 4
Parameters
Name Value
. Height 25
el Bx 00050003 BxdBb55633 31 oxsE Bxbs Bxdd Width 35
— ooemessy o3 s oo ™ e 2
axsossact oapatoests | 013 oo w0 ™ Register map
iD.czports) Name Address RAW?
LED_O D RAW
LED_1 m RW
En2 | ma
Exports
Display type: Hex ~ Go to register; ~ Go to section: -

Value

Hex

Contents

* Ripes simulator
* Programming
} Basics Assembly Structure
} Declaring Registers
} Initialing Registers
} Logic Operating on Registers
} Arithmetic Operations
} Special Function API (Multiplication with the Support of Addition)
} Memory Access (Basic Concept)

} External Peripheral Access (Basic Concept)

Basics Assembly Structure in Ripes

Creating a New Program:

* Open the code editor and start a new assembly file.
* Define the .data and .text sections.

* Write the entry point with the _start label.

Example:

.data

text

.globl_start

_start:

Your instructions here

Initializing Registers in Ripes

Loading Immediate Values:
* Initialization is the process of assigning a value to the Variable.

* Use the li (Load) instruction to initialize registers with specific values.

Example:

li t0, 10 # Load immediate value 10 into register t0

lui t3, 0x12345 #load 20 bits as a most significant bits in 32 bit register by lui

Declaring Registers in Ripes

Using Registers:

* Declaration tells the compiler about the existence of an entity in the program and
its location.

* Understand the different types of registers (temporary t0-t6, saved s0-s11,
argument a0-a7).

Example:

lw t0, sO #load sO register into tO register
lw 16, s11 #load s11 register into t6 register

Contents

* Ripes simulator
* Programming
} Basics Assembly Structure
} Declaring Registers
} Initialing Registers
} Logic Operating on Registers
} Arithmetic Operations
} Special Function API (Multiplication with the Support of Addition)
} Memory Access (Basic Concept)

} External Peripheral Access (Basic Concept)

Logic Operations on Registers in Ripes

NOT Operation:

li a0, 5

not al, a0 #(not): Inverts all the bits of the operand

AND Operation:

lia0,91ial,5

and a2, al, a0 #(and): Sets each bit to 1 if both corresponding bits are 1.
OR Operation:

lia0,91ial,5

or a2, al, a0 #(or): Sets each bit to 1 if at least one corresponding bit is 1
XOR Operation:

lia0,91ial,5

xor a2, al, a0 #(xor): Sets each bit to 1 if only one of the corresponding bits is 1.

Contents

* Ripes simulator
* Programming
} Basics Assembly Structure
} Declaring Registers
} Initialing Registers
} Logic Operating on Registers
} Arithmetic Operations
} Special Function API (Multiplication with the Support of Addition)
3 Division with the Support of Subtraction
} Memory Access (Basic Concept)

} External Peripheral Access (Basic Concept)

Arithmetic Operations in Ripes

Addition:

li a0, 10

lial, 20

add a2, a0, al # a2 =a0 + al
Subtraction:

li a0, 20

lial, 10

sub a2, a0, al #a2 =a0 - al
Multiplication (using shifts):
li a0, 9

lial, 1

sll t0, a0, al

Logical shift left a0 by al positions
(9x2/1=18)

Division (using shifts):

li a0, 16

lial, 3

srl t0, a0, al

Logical shift right a0 by al positions
(16x2/3=2)

Contents

* Ripes simulator
* Programming
} Basics Assembly Structure
} Declaring Registers
} Initialing Registers
} Logic Operating on Registers
} Arithmetic Operations
} Special Function API (Multiplication with the Support of Addition)
3 Division with the Support of Subtraction
} External Memory Access (Basic Concept)

} External Peripheral Access (Basic Concept)

Multiplication with the Support of Addition (pseudo code)

- ™

Start

¥

Initilization

reg0O = input varl
regl= input varz2
reg2 — output result
reg3 = counter = 0O
A

ul_loop
iT (counter==
wvarz2)

No result=result+wvarl
couter=counter+1

exit call
a7Ff=93

ecall

Contents

* Ripes simulator
* Programming
} Basics Assembly Structure
} Declaring Registers
} Initialing Registers
} Logic Operating on Registers
} Arithmetic Operations
} Special Function API (Multiplication with the Support of Addition)
} Division with the Support of Subtraction
} Memory Access (Basic Concept)

} External Peripheral Access (Basic Concept)

Division with the Support of Subtraction (pseudo code)

]
J,

Initilization
reg0 = dividend= input var1
reg1= divisor= input var2

reg2 = quotient register= 0
reg3 = resuli register=10

division_loop Mo end_division
if (a0 ==at) esult = quotien
subtract_divisor exit call
sub = al - al ar=93
quotient=quotient+1 ecall

Contents

* Ripes simulator
* Programming
} Basics Assembly Structure
} Declaring Registers
} Initialing Registers
} Logic Operating on Registers
} Arithmetic Operations
} Special Function API (Multiplication with the Support of Addition)
3 Division with the Support of Subtraction
} Memory Access (Basic Concept)

} External Peripheral Access (Basic Concept)

Memory Access (Basic Concept)

Accessing memory beyond the registers involves using load and store instructions. This is typically done using lw (load word)
and sw (store word).

Example:

.data

vall: .word 10

val2: .word 20

text

.globl _start

_start:

Iw t0, vall # Load the value at address vall into t0

Iw t1, val2 # Load the value at address val2 into t1

add t2, tO, t1 # Add the values in t0 and t1

sw t2, 0x100(t0) # Store the result at a specific memory address

Contents

* Ripes simulator
* Programming
} Basics Assembly Structure
} Declaring Registers
} Initialing Registers
} Logic Operating on Registers
} Arithmetic Operations
} Special Function API (Multiplication with the Support of Addition)
3 Division with the Support of Subtraction
} Memory Access (Basic Concept)

} External Peripheral Access (Basic Concept)

External Peripheral Access (Basic Concept)

Interfacing with peripherals (like timers, keyboards, displays) typically involves memory-mapped

I/O, where peripheral registers are accessed via specific memory addresses.
Accessing Memory Mapped 10: Interact with peripherals via specific memory addresses.

Example:
li t0, 0x10008000 # Address of peripheral
li t1, 1 # Data to write

sw t1, 0(t0) # Write data to peripheral

	RISCV Assembly Programming
	Contents
	Ripes simulator
	Setting up Ripes simulator
	Ripes simulator (2)
	Contents (2)
	Basics Assembly Structure in Ripes
	Initializing Registers in Ripes
	Declaring Registers in Ripes
	Contents (3)
	Logic Operations on Registers in Ripes
	Contents (4)
	Arithmetic Operations in Ripes
	Contents (5)
	Multiplication with the Support of Addition
	Contents (6)
	Division with the Support of Subtraction
	Contents (7)
	Memory Access (Basic Concept)
	Contents (8)
	External Peripheral Access (Basic Concept)

