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Basic Processor Architecture

Processor Architecture refers to the design and organization of a processors central processing
unit (CPU).

Components of Processor:

Arithmetic and Logic Unit: Performs mathematical calculations.

Control Unit: Control the overall processing of the processor.

Decoders Unit: Convert coded instructions into signals that can control other components.

Registers: Hold data, instructions, and addresses temporarily during processing.

Buses: Electrical pathways that transmit data and signals between components. Types include the data
bus, address bus, and control bus.
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Clock: Generates timing signals to synchronize the
operations of the CPU components. The clock speed
determines how many instructions per second the
CPU can execute.

Instruction Set Architecture (ISA): Defines the set of
instructions the CPU can execute

Cache: Stores frequently accessed data and
instructions to speed up processing.

Memory Management Unit (MMU): Handles the
translation of virtual addresses to physical addresses.
Manages memory protection and caching.

Input/Output (I/0) Interfaces: Allow the CPU to
communicate with peripheral devices. Include ports
and controllers for devices such as keyboards, mice,
and storage.
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Arithmetic Logic Unit ALU:

In computing, an arithmetic logic unit (ALU) is a combinational digital circuit that performs
arithmetic and bitwise operations on integer binary numbers.

It is a fundamental building block of many types of computing circuits, including the central
processing unit (CPU) of computers, FPUs, and graphics processing units (GPUs).

Functions of ALU:

Basic Operations Basic Instructions

Arithmetic operations Addition, Subtraction, Multiplication, division
Logical operations Logical Sum(OR), Logical Product(AND), Logical negation (NOT)
Comparison Comparison Instruction (size compare)

Branch Branch instructions to alter the instruction sequence based on conditions



Registers

* Registers are a type of computer memory built directly into the processor that is used to store and
manipulate data during the execution of instructions.

* A register may hold an instruction, a storage address, or any kind of data (such as a bit sequence or
individual characters).
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Registers in Processor Architecture

Data Registers
Store data fetched from memory or

obtained from input/output operations.

Program Counter

Keeps track of the memory address of
the next instruction to be fetched and
executed.

Status Register
Indicates the outcome of arithmetic and
logic operations, such as carry, overflow,

Instruction Register
Holds the currently fetched instruction P
being executed.

zero, and others.

Accumulator Address Register

Used for arithmetic and logical
operations. It stores intermediate results
during calculations.

Stack Pointer
Manage the stack for function calls and —PrE—————
local variable storage.

General-Purpose Registers Control Register




Control Unit:

The control unit controls all the operations of the processor. It retrieves, decodes and
executes the code instructions one-by-one in the order they are stored in the main memory.

It instructs the arithmetic logic unit, memory, input/output devices how to respond to the

instructions of the program.

l Control signals
Within CPU
_— —_—
Flags Contral signals from
" - Control bus

Clock ——— =

Control signals to
Control bus

Block Diagram of the Control Unit

Control
Bus

Instruction Register - 16 Bits Format

15

14 | 13

12 | OO

8 7 6 S < < 2 1l

Instruction Format

Add Mode

OPCODE - 12 To 14 Bits

Address - 0 To 11 Bits

L Fetch - From Address Of The OPERAND

L Decode Instruction As Per This OPCODE

|\ Addressing Mode Direct Mode - 0, Indirect Mode - 1




Stages: Execution Clock Cycles

Reset:
Initialize

Decode
instruction

Branch
Instruction
?

Increment
PC

Execute
instruction

ROYAL INSTIT
OF TECHNOLD

Instruction

Fetch

: Instr. Decode :

Execute

i Memory : Write
Addr. Calc : :

Reg. Fetch Access Back

Next PC

ext SEQ PC

Next SEQ PC

WER Data

IR <=
PC <=

mem[PC] ;
PC + 4

A <= Reg[IR,]}
iB <= Reg[IR,]i

iWB <= rslti

Reg[IR,] <= WB

rslt <= A OP;ipyp, B




Instruction Set Architecture (ISA)

An Instruction Set Architecture (ISA) is part of the abstract model of a computer that
defines how the CPU is controlled by the software.

* The ISA acts as an interface between the hardware and the software, specifying both
what the processor is capable of doing as well as how it gets done.

 The ISA defines the supported data types, the registers, how the hardware manages

main memory, key features (such as virtual memory), which instructions a
microprocessor can execute, and the input/output model of multiple ISA
implementations.
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Instruction Set Format

31 27
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20 19 15

14 12

11 7 6

funct7 | rs2 sl funct3 rd opcode R-type
imm[11:0] rsl funct3 rd opcode I-type
imm[11:5] rs2 rsl funct3 imm[4:0] opcode S-type
imm[12]|10:5] rs2 rsl funct3 | imm[4:1]11] opcode B-type
imm[31:12] rd opcode U-type
imm[20]10:1]11]19:12] rd opcode J-type

A form of representation of an instruction composed of fields of binary numbers.”

Fields of instruction:

There are several fields of the instruction that serve a specific role in the format. Some common are fields are given

below:

1. Opcode:
» Specifies the operation to be performed (e.g., add, subtract, load, store).
 Determines what action the CPU should take.

2. Operand:

« The data or the addresses of the data on which the operation is to be performed.

« Can include immediate values, register addresses, or memory addresses.
3.

Processor uses different Addressing modes Common modes include:

Addressing Modes:

immediate, direct, indirect, register, and indexed addressing.
4. Registers:

Specifies which CPU registers are to be used in the operation.
Could include source and destination registers.
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Instruction Types

A computer’s instructions can be any length and have any number of
addresses.

« The arrangement of a computer’s registers determines the different address
fields in the instruction format.

 The instruction can be classified as three, two, and one address instruction
or zero address instruction, depending on the number of address fields.

Based on these differences the instructions are classified as
1) Three Address Instruction

2) Two Address Instruction

3) One Address Instruction

4) Zero Address Instruction



Three Address Instruction:

Three-address instruction is a format of machine instruction. It has one
opcode and three address fields.

One address field is used for destination and two address fields for
source.

OPCODE DESTINATION  SOURCE 1 SOURCE 2
Example:
ADD R1, A, B R1 = M[A] + M[B]
ADD R2,C, D R2 = M[C] + M[D]

MUL X, R1, R2 M[X] = R1 * R2




Two Address Instruction:

Two-address instruction is a format of machine instruction. It has one

opcode and two address fields which may be memory locations or
registers..

One address field is used for destination and one address field for source.

For example, a two-address instruction might add the contents of two
registers together and store the result in one of the registers.

OPCODE DESTINATION SOURCE

Example

MOV R1, A R1 = M[A]

ADD R1, B R1 = R1 + M[B]




One Address Instruction:

These instructions specify one operand or address, which typically refers
to a memory location or regqister.

The instruction operates on the contents of that operand, and the result
may be stored in the same or a different location.

For example, a one-address instruction might load the contents of a
memory location into a register.

OPCODE DESTINATION

Example:

STORE T M[T] = AC

LOAD C AC = M[C]




Zero Address Instruction:

These Instructions do not specify any operands or addresses.
Instead, they operate on data stored in registers or memory
locations implicitly defined by the instruction.

For example, a zero-address instruction might simply add the
contents of two registers together without specifying the register
names.



Types of Instructions and Addressing Modes

Implied Mode
Example: CLC ; Clear the carry flag, no operands needed

Immediate Mode
Example: ADDI x1, x2, 10 ; Add immediate value 10 to register x2 and store result in x1

Register Mode
Example: MOV 10, r1 ; Move the contents of register r1 to register r0

Register Indirect Mode
Example: LW $t0, 0($t1) ; Load the word at the address in $t1 into $t0



Autodecrement Mode
Example: MOV -(R1), RO ; Decrement R1 and then move the value at the new address in R1 to RO

Autoincrement Mode
Example: MOV (R1)+, RO ; Move the value at the address in R1 to RO, then increment R1

Direct Address Mode
Example: LDA $4000 ; Load the accumulator with the value at memory address $4000

Indirect Address Mode
Example: JMP ($1234) ; Jump to the address stored at memory location $1234

Indexed Addressing Mode
Example: MOV AX, [BX+SI] ; Move the value at address (BX + SI) into AX



Important Parameters of a Processor

Clock

Data Bus

nstruction Bus
nstructions Per Cycles
Pipeline Stage
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Flynn Taxonomy

* The matrix below defines the 4 possible classifications
according to Flynn

SISD SIMD
Single Instruction, Single Data Single Instruction, Multiple Data
MISD MIMD

Multiple Instruction, Single Data | Multiple Instruction, Multiple Data

M



Types of Processor ISA

Reduced Instruction Set Computing (RISC) vs Complex Instruction Set Computing (CISC)

RISC

Instructions Per Cycle Small and fixed length Large and variable length

Instruction Complexity Simple and standardised Complex and versatile

Instruction Execution Single clock cycle Several clock cycles

RAM Usage Heavy use of RAM More efficient use of RAM

Increased memory usage to store
instructions

Memory

Memory efficient coding

Cost Cheaper than CISC Higher



RISC vs CISC

The RISC approach has several advantages over CISC:

 Simplifies Hardware Implementation: It simplifies the hardware
implementation of the processor, as fewer instructions need to be
decoded and executed. This can lead to faster execution times and
lower power consumption.

 Higher Instruction Level Parallelism: RISC processors typically

have a higher instruction-level parallelism, allowing them to execute
multiple instructions simultaneously, which can further improve
performance.

 Simplicity: The simplicity of the RISC instruction set makes it easier to
develop compilers and other software tools that can generate efficient
code for the processor.



RISCvs CISC

RISC is a processor design philosophy that emphasizes simplicity and
efficiency by wusing a small set of simple and general-purpose
instructions.

« The complex instruction set computing (CISC), employs a larger set
of more complex instructions that can perform multiple operations in a
single instruction.

e RISC architectures prioritize simplicity and execute one instruction per
clock cycle, resulting in streamlined designs and efficient decoding.

e CISC architectures, on the other hand, employ complex instructions
capable of performing multiple actions but may require several clock
cycles for execution. Both the CPUs aim to enhance CPU performance.



Single-purpose processors

Digital circuit designed to execute exactly one program v——
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Embedded System Processor Architecture

Controller Datapath

* Reduced Instruction Set Computing (RISC): Control Registers

} Common architectures: ARM, RISC-V. Iogtca?end |

b Simple, efficient instruction set optimized for low power and high performance. register Custom
* System on Chip (SoC): ,g PIC ALY

} Frequently used in embedded systems. A v Data

b Integrates CPU, memory, peripherals, and other components on a single chip. Program memory
* Microcontroller Units (MCUSs): memory

} Often used in simpler embedded applications. Aosembly

} Includes integrated peripherals like ADCs, DACs, timers, and communication interfaces otal =
* Real-Time Capabilities: fori=1to...

} Designed for deterministic performance and real-time operating system (RTOS) support.
* Low Power Consumption:
} Architectures and components optimized for minimal power usage.

Integrated Analog and Digital Peripherals:
} Features like GPIOs, serial communication interfaces, and specialized hardware accelerators.
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General-Purpose Processor (GPP) Architecture
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Integrated Memory Management Unit (MMU):

' Manages virtual memory, enabling sophisticated operating system features.
High-Speed Interconnects:

" Fast communication between CPU, memory, and peripherals.

Graphics Processing Unit (GPU) Integration:

} Some GPPs include integrated GPUs for handling graphics processing tasks.



Number x86 Instructions

1600

1200

800

400

0
1978

1982

1986

1990 1994 1998 2002 2006 2010 2014




Topics

1. Basic Processor Architecture

2. Different Types of Processor Architectures
3. RISC-V Processor Architecture

4. RISC-V Instruction Set Architecture

5. Programming RISC-V using assembly language




RISC-V Processor Architecture

The RISC-V (pronounced as risk-five) architecture is an open-source instruction set
architecture (ISA) implementation of reduced instruction set computing RISC.

RISC-V is open-hardware architecture, its open source allows anyone to utilize the ISA.

History of RISC-V

* Prof. Krste Asanovi¢ and graduate students Yunsup Lee and Andrew Waterman started the RISC-V instruction
set in May 2010 as part of the Parallel Computing Laboratory (Par Lab) at UC Berkeley, of which Prof. David
Patterson was Director.

* No patents were filed related to RISC-V in any of these projects, as the RISC-V ISA itself does not represent any
new technology.

* RISC processor implementations—including some based on other open ISA standards— are widely available
from various vendors worldwide.



https://parlab.eecs.berkeley.edu/

Processor Architecture

Base Instruction Set

, , Base and Extension of RISC-V
RV32I Base Integer Instruction Set, 32-bit

» Four base integer ISAs

: — ‘ i - RV32E, RV32, RV64l, RV128|
RV32E Base Integer Instruction Set (embedded), 32-bit - RVB2E I 16-register subset of RV32

RV64| Base Integer Instruction Set. 64-bit - Only<50hardv.faremstrucnonsneededforbase
» Standard extensions

- M: Integer multiply/divide
- A: Atomic memory operations (AMOs + LR/SC)

Exte N Sion . - F: Single-precision floating-point
o - D: Double-precision floating-point
Name Description - G =IMAFD, “General-purpose” ISA
: o : s g = Q: Quad-precision floating-point
C C ! j C i 5 . W
M Standard Extension for Integer Multiplication and Division + All the above are a fairly standard RISC encoding in a
o Standard Extension for Atomic Instructions fixed 32-bit instruction format
I Standard Extension for Single-Precision Floating-Point * Above user-level ISA components frozen in 2014
D Standard Extension for Double-Precision Floating-Point
Zicsr Control and Status Register (CSR) Instructions
Zifencei Instruction-Fetch Fence
G Shorthand for the IMAFDZicsr_Zifenceil base and extensions

C Standard Extension for Compressed Instructions




RISCV: Registers and Mapping

RISC-V uses a memory-mapped I/O architecture, which means
that input and output operations, memory access, and

peripheral access are all performed using the same load and
store instructions.

This unified approach simplifies the instruction set and
enhances the flexibility and efficiency of the architecture.
There are two basic types of instructions:

* |nstructions that either load memory into registers or store data from
registers into memory

* Instructions that perform arithmetical or logical operations between two
registers



Why RISC-V

Open Hardware: Allowing anyone to design,
Implement, and customize processors without

restrictions, fostering innovation and

collaboration within the community.
Royalty-Free: There are no licensing fees,
reducing costs for developers and

manufacturers.

Security: Rigorous security analysis and the
Implementation of custom security features,
enhancing trustworthiness.

ARM-32 (1986)

Mistakes of the Past
MIPS-32 (1986)

x86-32 (1978)

Lessons learned
RV32I(2011)

Cost Integer multiply |Integer multiply | 8-bit and 16-bit op- |No 8-bit and 16-bit op-
mandatory and divide manda- |erations. Integer |erations. Integer multi-
tory multiply and divide |ply and divide optional

mandatory (RV32M)

Simplicity No zero register.|Zero- and sign-|No zero register. Register x0 dedicated to
Conditional in- | extended imme- | Complex procedure |0. Immediates only sign-
struction execution. |diates. Some |call/return instruc- |extended. One data ad-
Complex data |arithmetic instruc- |tions (enter/leave).|dressing mode. No con-
address modes. |tions can cause|Stack instructions|ditional execution. No
Stack instruc- |overflow traps (push/pop). Com- |complex call/return or
tions  (push/pop). plex data address stack instructions. No
Shift-option for modes. Loop |traps for arithmetic over-
arithmetic/logic instructions flow. Separate shift in-
instructions structions

Performance |Condition codes for |Source and destina- | Condition codes for | Compare and branch in-
branches.  Source |tion registers vary in |branches. At most|structions (no condition
and destination |instruction format. |2 registers per in-|codes). 3 registers per in-
registers vary in struction struction. No load mul-
instruction format. tiple. Source and desti-
Load multiple. nation registers fixed in
Computed immedi- instruction format. Con-
ates. PC a general stant immediates. PC not
purpose register a general purpose regis-

ter

Isolate archi-|Exposes the pipe-|Delayed  branch.|Registers not gen-|No delayed branch. No

tecture  from|line length when|Delayed load. HI|eral purpose (AX,|delayed load. General

implementa- | writing the PC as|and LO registers|CX, DX, DI, SI|purpose registers

tion a general purpose just for multiply 'have unique uses)
register and divide

Room for|Limited available|Limited available Generous available op-

growth opcode space opcode space code space

Program size

Only 32-bit instruc-
tions (+Thumb-2 as
separate ISA)

Only 32-bit instruc-
tions (+microMIPS
as separate ISA)

Byte-variable  in-
structions, but poor
choices

32-bit instructions + 16-
bit RV32C extension

ISA Pages

Words

Hours to read

Weeks to read

RISC-V
ARM-32
x86-32

236
2736
2198

76,702
895,032
2,186,259

6
79
182

0.2
1.9
4.5

Ease of pro-

gramming
compiling
linking

/
/

Only 15 registers.
Aligned data in

Mmemory. Irregu-
lar data address
modes.  Inconsis-

tent  performance
counters

Aligned data in
memory. Inconsis-
tent  performance
counters

Only 8 registers. No
PC-relative data ad-
dressing. Incon-
sistent performance
counters

31 registers. Data can be
unaligned. PC-relative
data addressing. Sym-
data  address
Performance
defined in

metric
mode.
counters
architecture




Types of RISC-V Processor Architectures

RISC-V provides a detailed, open Instruction Set Architecture (ISA), which serves as a blueprint
for designing processors architecture.

Single-Cycle Architecture:

Multi-Cycle Architecture:

Pipelined Architecture:

Superscalar Architecture:

Out-of-Order Execution:

Very Long Instruction Word (VLIW) Architecture:
Vector Processing Architecture:

Custom Instruction Set Extensions:
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Defining/Designing RISC-V Processor Architecture

* Fetch: Retrieve the instruction from memory.

* Decode: Interpret the instruction and prepare operands.

* Execute: Perform the computation or operation (ALU
operations, branches).

* Memory: Access memory for load/store operations.
* Writeback: Write the result to the register file or memory.



5 Stages of Processor Arch

* Fetch Unit
Function: Retrieves instructions from memory.
PC Usage: The PC holds the address of the next instruction to be fetched. After fetching an

Instruction, the PC is typically incremented to point to the next instruction address.
Example: If the starting address of the first instruction is 0x8000000, the Fetch Unit will

fetch the instruction from address 0x8000000 initially.

* Decode Unit
Function: Interprets the fetched instruction to determine its operation and operands.

Memory Access: Decodes memory addresses and identifies whether they are for RAM,

ROM, or I/O devices. It also decodes which registers are involved.
ALU: Determines the type of ALU operation required (e.g., addition, subtraction) and

prepares operands for execution.
Example: Decodes an instruction to add two registers and prepare the operands for the

ALU.



Execute Unit

Function: Performs the arithmetic or logical operations as specified by the instruction.

ALU: Executes ALU operations (e.g., addition, subtraction) using the operands provided by the
Decode Unit.

Memory Access: Computes effective addresses for load/store operations.

Example: Executes an addition operation on two registers or calculates the address for a load
instruction.

Memory Unit

Function: Accesses memory or I/O based on the address computed in the Execute stage.

Memory Access: Performs read/write operations to RAM or memory-mapped I/O devices based
on the effective address.

Example: Reads data from address 0x00002000 in RAM or writes data to a memory-mapped
/O device at 0x20000000.

Write Back Unit

Function: Writes the result of computations or memory accesses back to the register file or
memory.

Memory Access: Updates the register file with results from the Memory Unit or ALU operations.

Example: Writes the result of an addition operation back to a register or stores data retrieved
from memory to a register.



Pipe-lined VS Single Cycle Processor Architecture
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5 Stage Pipelined Processor Architecture
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Read Read
PC Address register 1 data 1
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register 2 Address
Instruction M Read |
) Registers | data | 1
WWrite Read I Data | M
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Topics

1. Basic Processor Architecture

2. Different Types of Processor Architectures
3. RISC-V Processor Architecture

4. RISC-V Instruction Set Architecture

5. Programming RISC-V using assembly language




RISCV Instructions Set

* RISC-V (Reduced Instruction Set Computing V) is an open standard instruction set
architecture (ISA) that is designed to be scalable and extensible. The number of
instructions in RISC-V can vary based on the specific subset or extensions of the ISA
being used. Here's a breakdown of the primary RISC-V instruction sets and their
respective instruction counts:

. Base ISA:

- RV32I (32-bit Integer): The base integer instruction set for 32-bit processors includes
approximately 47 instructions.

- RV64I (64-bit Integer): The base integer instruction set for 64-bit processors extends RV32| and
includes a few additional instructions specific to 64 bit operations.



Instruction Extensions

* Standard Extensions:
> M (Multiply/Divide): Adds multiply and divide instructions.
> A (Atomic): Adds atomic instructions for synchronization.
> F (Single-Precision Floating-Point): Adds single-precision floating-point instructions.
> D (Double-Precision Floating-Point): Adds double-precision floating-point instructions.
> Q (Quad-Precision Floating-Point): Adds quad-precision floating-point instructions.
> C (Compressed): Adds compressed instructions to reduce code size.

* Other Extensions:
> B (Bit-Manipulation): Adds instructions for bit manipulation.
> V (Vector): Adds vector processing instructions.
> P (Packed-SIMD): Adds packed SIMD instructions.

» 7 (Various small extensions): These include specific sets of instructions like Zifencei for
instruction-fence or Zicsr for control and status registers.



Basic RISCV Processor

* The 47 standard instructions in RV32Il include:

>
>
>
>
>
>
>
>
>

Arithmetic Instructions: ADD, SUB, MUL, etc.
Logical Instructions: AND, OR, XOR, etc.
Immediate Instructions: ADDI, ORI, XORI, etc.
Load Instructions: LB, LH, LW, etc.

Store Instructions: SB, SH, SW, etc.

Branch Instructions: BEQ, BNE, BLT, etc.
Jumps: JAL, JALR

System Instructions: ECALL, EBREAK

Other Instructions: NOP, AUIPC, LUI, etc.

31 25 24 20 19 15 14 12 11 7
imm[31:12] rd 0110111
imm[31:12] rd 0010111
imm[20[10:1[11]19:12] rd 1101111
imm[11:0] rsl 000 rd 1100111
imm[12]10:5] rs2 rsl 000 imm[4:1]11] 1100011
imm[12]10:5] rs2 rsl 001 imm[4:1]11] 1100011
imm[12]10:5] rs2 rsl 100 imm[4:1]11] 1100011
imm[12]10:5] rs2 rsl 101 imm[4:1|11] 1100011
imm[12]10:5] rs2 rsl 110 imm[4:1]11] 1100011
imm[12]10:5] rs2 rsl 111 imm[4:1]11] 1100011
imm[11:0] rsl 000 rd 0000011
imm|11:0] rsl 001 rd 0000011
imm|11:0] rsl 010 rd 0000011
imm|[11:0] rsl 100 rd 0000011
imm[11:0] rsl 101 rd 0000011
imm/[11:5] rs2 rsl 000 imm([4:0] 0100011
imm/[11:5] rs2 rsl 001 imm([4:0] 0100011
imm[11:5] rs2 rsl 010 imm|[4:0] 0100011
imm[11:0] rsl 000 rd 0010011
imm|11:0] rsl 010 rd 0010011
imm|11:0] rsl 011 rd 0010011
imm|[11:0] rsl 100 rd 0010011
imm[11:0] rsl 110 rd 0010011
imm[11:0] rsl 111 rd 0010011
0000000 shamt rsl 001 rd 0010011
0000000 shamt rsl 101 rd 0010011
0100000 shamt rsl 101 rd 0010011
0000000 rs2 rsl 000 rd 0110011
0100000 rs2 rsl 000 rd 0110011
Q000000 rs2 rsl 001 rd 0110011
0000000 rs2 rsl 010 rd 0110011
0000000 rs2 rsl 011 rd 0110011
0000000 rs2 rsl 100 rd 0110011
0000000 rs2 rsl 101 rd 0110011
0100000 rs2 rsl 101 rd 0110011
0000000 rs2 rsl 110 rd 0110011
0000000 rs2 rsl 111 rd 0110011
0000 pred succ 00000 000 00000 Q001111
0000 0000 0000 00000 001 00000 Q001111
00000000000 00000 000 00000 1110011
000000000001 00000 000 00000 1110011
CST rsl 001 rd 1110011
CcsT rsl 010 rd 1110011
CSsT rsl 011 rd 1110011
ST Zzimm 101 rd 1110011
ST Zzimm 110 rd 1110011
CSsT Zzimm 111 rd 1110011

U lui
U auipc
J jal

I jalr
B beq
B bne
B blt
B bge
B bltu
B bgeu
Ilb
11h
Ilw

I Ibu

I lThu

S sb

S sh

S sw

I addi
I slt

I sltin
I xori

I ori

I andi
I slli

I srli

I srai
R add
R sub
R sll

R slt

R sltu
R xor
R srl

R sra
R or

R and
I fence
I fence.i
I ecall
I ebreak
I csrrw
I csrrs
I csrre
I csrrwi
I csrrsi
I csrrei



Types of RISCV ISA

RISC-V Instruction Set:

The RISC-V instruction set is a collection of instructions that define the operations a RISC-V
processor can perform.

These instructions are designed to be simple, efficient, and easily extensible, allowing for a high
degree of customization and optimization.

Instruction Types:

R-Type (Register Type): Used for register-register arithmetic and logical operations.

I- Type (Instruction Type): Used for immediate arithmetic, load instructions, and register-immediate operations.
S-Type (Store Type): Used for store instructions.

U-Type (Upper Immediate Type) : Used for upper immediate instructions

B-Type (Branch Type) : Used for conditional branch instructions.

J-Type (Jump Type) : Used for jump instructions like JAL.

F-Type (Floating-Point) Instructions

A-Type (Atomic) Instructions

DV 00 N oUW

C-Type (Compressed) Instructions



Registers

* Total Registers: 32 general-purpose registers, additional special-purpose
and control registers.

} General Purpose Registers: x0 to x31, with specific roles for some registers.
} Special Purpose Registers: Includes PC, SP, GP, TP.

} Control and Status Registers: Includes MSR, MEPC, MCAUSE, MSTATUS, MTVEC.

Program Counter (PC): Holds the address of the current instruction being executed.

Instruction Register (IR): Holds the current instruction being executed (in some
implementations).

Stack Pointer (SP): Points to the top of the stack.
Global Pointer (GP): Points to the global data region.
Thread Pointer (TP): Points to the thread-local storage.

Machine Status Register (MSR): Controls machine-level status and configuration.

Machine Exception Program Counter (MEPC): Holds the address of the instruction where an
exception occurred.

Machine Cause Register (MCAUSE): Contains information about the cause of the last
exception.

Machine Status Register (MSTATUS): Holds the status of the machine, including interrupts and
mode.

Machine Trap Vector Base Address Register (MTVEC): Base address for the trap vector.

} Floating-Point Registers: If included, fO to f31 for floating-point operations.

Register Symbolic

x0

x1

X2

x3

x4

X5
x6-7
x8

X9
x10-11
x12-17
x18-27

x28-31

name

Zero
ra
Sp
gp
tp

t0
t1-2
s0/fp
s1
a0-1
az2-7
s2-11

t3-6

Description

32 integer registers
Always zero
Return address
Stack pointer
Global pointer
Thread pointer
Temporary / alternate return address
Temporary
Saved register / frame pointer
Saved register
Function argument / return value
Function argument
Saved register

Temporary

Saved by

Caller

Callee

Caller
Caller
Callee
Callee
Caller
Caller
Callee

Caller



RISC-V Instruction Format

31 27 26 25 24 20 19 14 12 11 7
funct?7 rs2 rsl funct3 rd opcode
imm[11:0] rsi funct3 rd opcode
imm[11:5] rs2 rsl funct3 imm/[4:0] opcode
imm[12]10:5] rs2 rsl funct3 | imm[4:1]11] opcode
imm[31:12] rd opcode
imm[20/10:1(11|19:12] rd opcode

https://www.cs.sfu.ca/~ashriram/Courses/CS295/assets/notebooks/RISCV/RISCV_CARD.pdf

S-type
B-type
U-type
J-type



RISC-V Instructions and Formats

RV32I Base Integer Instructions

Inst Name FMT | Opcode | functd | funct? Description (C) Note

add ADD R 8110811 | 6xé Bx00 rd = rsl1 + rs2

sub SUB R @11ee811 | axe Bx20 rd = rs1 - rs2

xor XOR R 8110811 | x4 Bx00 rd = rs1 ° rs2

or OR R 8112811 | éx6 Ax0a rd = rsl | rs2

and AND R a11eall | ax7 Bx 00 rd = rs1 & rs2

s11 Shift Left Logical R 8110011 | 8x1 @00 rd = rs1 << rs2

srl Shift Right Logical R 8110811 | @x5 @x 00 rd = rs1 >> rs2

sra Shift Right Arith* R 8112011 | 8x5 @x20 rd = rs1 >> rs2 msb-extends
slt Set Less Than R artiaall Bx2 @xee rd = (rs1 < rs2)71:9

sltu Set Less Than (U) R 2110011 | @x3 @x00 rd = (rs1 < rs2)?1:0 zero-extends
addi ADD Immediate I 0010011 | ax@ rd = rs1 + imm

xori XOR Immediate I 2010011 | ax4 rd = rs1 * imm

ori OR Immediate I 2010811 | &x6 rd = rs1 | imm

andi AND Immediate | @a10811 | ax7 rd = rs1 & imm

s11i Shift Left LDgiEE] Imm I aaleal ax1 imm[5:11]=0x8@ | rd = rs1 << imm[@:4]

srli Shift Right Logical Imm I 8212811 | @x5 imm[5:11]=0x00 | rd = rs1 >> imm[@:4]

srai Shift Right Arith Imm I 8010011 | @x5 imm[5:11]=0x20 | rd = rs1 >> imm[@:4] msb-extends
slti Set Less Than Imm | @e10e11 | ax2 rd = (rs1 < imm)71:@

sltiu Set Less Than Imm (U) I @o1e011 | ax3 rd = (rs1 < imm)?1:0 zero-extends




sb Store Byte s 8100811 | ox@ Mlrsl+imm][@:7] = rs2[0:7]

sh Store Half 5 a1eee11 | 8x1 M{rs1+imm][@:15] = rs2[@0:15]

SW Store Word S 190811 | 8x2 Mlrs1+imm][@:31] = rs2[@:31]

beq Branch == B 1100011 | oxo if(rs1 == rs2) PC += imm

bne Branch != B 1108811 | @x1 if(rs1 != rs2) PC += imm

blt Branch < B 1188811 | @x4 if(rs1 < rs2) PC += imm

bge Branch = B 11800811 | @x5 if(rs1 >= rs2) PC += imm

bltu Branch < (U) B 1188811 | 9x6 if(rs1 < rs2) PC += imm zero-extends
bgeu Branch > (U) B 1100011 | @x7 if(rs1 >= rs2) PC += imm zero-extends
jal Jump And Link J 1181111 rd = PC+4: PC += imm

jalr Jump And Link Reg [ 1188111 | @xa rd = PC+4; PC = rs1 + imm

lui Load Upper Imm u 110111 rd = imm << 12

auipc Add Upper Imm to PC U ee1e111 rd = PC + (imm << 12)

ecall Environment Call I 1118011 | @xe@ imm=0@x@ Transfer control to 0S

ebreak | Environment Break [ 1118811 | @xe imm=@x1 Transfer control to debugger




RV32M Multiply Extension

Inst Name FMT | Opcode | functd | funct? | Description (C)
mul MUL R a118e11 | exeé Bxd1 rd = (rs1 # rs2)[31:8]
mulh MUL High 34 a118811 | éx1 @x@1 rd = (rs1 # rs2)[63:32]
mulsu | MUL High (5) (U) R a11ee1 Bx2 @xal rd = (rs1 * rs2)[63:32]
mulu MUL High (U) R a11ee1 Bx3 @xal rd = (rs1 #* rs2)[63:32]
div DIV R ali1een Ox4 Axal rd = rs1 / rs2
divu DIV (L) R a118811 | @xh Bxd1 rd = rs1 / rs2
rem Remainder R 8118811 | oéxé Bx@1 rd = rs1 ¥ rs2
remu Remainder (U) R 8110811 | &x7 Bxa1 rd = rs1 ¥ rs2
RV32A Atomic Extension
31 27 26 25 24 20 19 15 14 12 11 76 0
functs aq rl rs2 rsl funct3 rd opcode
5 1 1 5 5 3 5 7
Inst Name FMT | Opcode | functd | functd | Description (C)
1r. w Load Reserved R @181111 | ox2 Bxe2 rd = M[rs1], reserve M[rsil]
SC._W Store Conditional R 2181111 | ox2 Bx@3 if (reserved) { Mlrsl1] = rs2; rd = @ }
else { rd =11}
amoswap.w | Atomic Swap R @101111 | ax2 @xa1 rd = M[rs1]; swap(rd, rs2); M[rsi] = rd
amoadd.w Atomic ADD R @a1a1111 | éx2 axee rd = M[rs1] + rs2; M[lrs1] = rd
amoand.w Aromic AND R a1a11il | ex2 @xacC rd = Mlrs1] & rs2; Mlrs1] = rd
amoor . w Atomic OR R a1a1tit | ex? BxaA rd = Mlrs1] | rs2; Mlrs1] = rd
amoxor . w Aromix XOR R 2181111 | ox2 @xed rd = M[rs1] ° rs2; M[rs1] = rd
amomax . w Aromic MAX R @1e1111 | éx2 ax14 rd = max(M[rs1], rs2); M[rsi1] = rd
amomin.w Atomic MIN R @1e@1111 | éx2 @x1@ rd = min(M[Lrs1], rs2); M[lrsl1] = rd




RISC-V Instruction Format: 1: R-Type

31 25 24 20 19 15 14 12 1 7 6 0
func7 rs2 rsi func3 rd opcode
S T — —
opcode: R1,A B Basic operation of the instruction, and this abbreviation is its traditional name.
oprand: R2,C,D The register destination operand. It gets the result of the operation
funct3: X, R1,R2 An additional opcode field.
rst: The first register source operand.
rs2: The second register source operand.
func7 An additional opcode field.
Assembly Field Values Machine Code
functy rs2 1  funct3d rd op functy rsZ2 31 funct3 rd op
:j: :.‘fé_:?é,;;.:. 0 20 19 0 18 51 ! :_!:Iml:l__l}l:ll:l ;1_|:||1-|:||:|_'1mu: 000, 10010 ;I:Hi_ nr:]nnl (Ox01498933)
sub tl, €1, t2 _ 3z 7 B 0 5 51 | D100,000 |00111,00110] 000 00103 0110011, (0x407302B3)

sub x5, =i, x7 1 ] ] L | 1 !
T bils Shis 5bis 3 bis 5 bils T bils T bits Shits 5 bis 3 bils 5 bils ¥ b



Immediate: I-Type

31 20 19 15 14 12 11 /7 © 0
imm[11:0] rsl func3 fo opcode
m No. O f bits Function
opcode: R1,A,B Basic operation of the instruction, and this abbreviation is its traditional name.
rd: R2,C, D The register destination operand. It gets the result of the operation
funct3: X, R1, R2 An additional opcode field.
rsl: The first register source operand.
imm The second register source operand.
Assembly Field Values Machine Code
_ im0 rs1  functd rd ap iy y rs1  functd rd op
e 7 ol 1 12 o [ 8 | ¢ 0000 0000 1100 [01001] 000 [o1000] 0010011 | (oxvecsssrn
sty e 14 0 | 18 19 111111110010 [00110] 000 |10010| 0010011 | (oxFF230913)
-1-: ;'g, jﬂﬁﬁg] & 19 | 2 T 3 11111111 1010 [10011] 010 ul:|111f 000 0011 | (OxFFAIAIEI)
-}E :3r gﬁ:afﬂ 27 0 1 | @ 3 Q000 0001 1011 [00000| 001 ﬂ1ﬂﬂ1: Qo0 0041 | {O0x0lB0i483)
1b 54, OxiE(sd) Ox1F 20| o | 20 3 0000 0001 1111 {10100 000 | 10100 0000011 | {OxO1FAGAQZ)

b x20,0xlF (x20) 12 bis Shis dbis 5 bas 7 b= 12 bis Sbas Jbes 5 bes 7 bis



Store: S-Type

31 25 24 20 19 15 14 12 11 7 6 0
imm[11:5] imm[4:0] opcode
I T A S
opcode: R1,A, B Basic operation of the instruction, and this abbreviation is its traditional name.
rd: R2,C, D The register destination operand. It gets the result of the operation
imm[4:0]: X, R1, R2 An additional opcode field.
rsl: The first register source operand.
rs2: The second register source operand.
imm[11:5] An additional opcode field.

#x1 based address
SW x2, 0(x1) # Memory[x1 + 0] = x2



Branch: B-Type

31 25 24 20 19 15 14 12 11 7 © 0
imm[11:5] imm[4:0] opcode
[ eone | mm
opcode: R1, A B Basic operation of the instruction, and this abbreviation is its traditional name.
rd: R2,C, D The register destination operand. It gets the result of the operation
imm[4:0]: X, R1, R2 An additional opcode field.
rsl: The first register source operand.
rs2: The second register source operand.
imm[11:5] An additional opcode field.

BEQ x1, x2, equal # If x1 == x2, branch to label 'equal’



Jump: J-Type

* Unconditional jump with an optional link to store the return
address.

3 opcode (7 bits): Operation code that specifies the jump
Instruction (e.g., JAL).

b rd (5 bits): Destination register for the return address.

b immediate (20 bits): Jump target offset, which is used to
calculate the jJump address relative to the current program
counter (PC).



Topics

1. Basic Processor Architecture

2. Different Types of Processor Architectures
3. RISC-V Processor Architecture

4. RISC-V Instruction Set Architecture




C program
foo.c
Compiller
Assembly program
foo.s
W

Et}bject (machine language mﬂdu]e)j Eibmr}* (machine language mndulei

foo.o lib.o

ercutab]e (machine language pro gramﬂ

a.out

W




RISCV GCC Assembler

_ start:

ld s3 0x001121
Ld rs2 0x0022233
add rd, rs1, rs2
St rd 0x0000001



Assembly or C/C++

* Write Efficient Code
* Secure Application

* Multi-Threaded and Complex Program to run multiple devices (OS)
* Real-Time Applications for Real world Problems



Programming RISC-V

* Problem

* Write it in your own words
Flowchart

* Make Pseudo Code
" -

* Create Control and Data-flow Graph \'——J/

* Program (C/C++, ASM)
* Debug

* Profile

* Optimize/Fine Tune

* Execute

Exit:
* Test




Hazards

 Data Hazards: Instructions are waiting for
data from other instructions.

* Control Hazards: Changes in instruction flow
cause delays.

e Structural Hazards: Limited hardware

resources cause delays.




/I example.c * The compiler generates an
int global_var = 10; object file in ELF format.
int main() { This object file contains

Int local var = 5;

int result = global var + machine code, data, and

local var: metadata, organized into
return result; different sections like .text
} (code), .data (initialized

data), and .bss (uninitialized
data).

riscv32-unknown-elf-gcc example.o -0 example



* Instruction Section: Contains the * MEMORY
compiled machine code instructions "
(text section). '

* Data Section: Contains initialized data .}
(data section). .

* The linker combines the code and
data sections, resolves symbols, and text: {
sets up memory addresses. . x(text)

* The linker script defines how different *  }>ROM
sections are mapped into the memory ’

ROM (rx) : ORIGIN = 0x08000000, LENGTH = 512K
RAM (rwx) : ORIGIN = 0x20000000, LENGTH = 64K

* SECTIONS
° {

of the microcontroller. .data : {
‘g ] . *(.data)
* It specifies memory regions and . }>RAM

assigns addresses to different sections -}
of the code and data.



* Next step involves using a
programmer or debugger tool to
flash the firmware into the RISCV
System.

b Instruction Memory: The code from
the .text section is loaded into the
system instruction memory.

} Data Memory: The Initialized data
from the .data section is loaded
Into the system data memory.



Linker Script: Program and Data Memory Allocation

The high addresses are the top of the figure and the low addresses

sp = bfff £ffOnay Stack
are the bottom. i

The stack pointer (sp) starts at BFFF FFFO hex and grows down

toward the Static data. The text (program code) starts at 0001 0000hex

and includes the statically-linked libraries. Dynamic data

The Static data starts immediately above the text region; in this patic dasy

1000 0000phex
example, we assume that address is 1000 0000hex . Dynamic data, Text
pc = 0001 0000phex

allocated in C by malloc(), is just above the Static data. Called the R corval

0

heap, it grows upward toward the stack. It includes the dynamically-

linked libraries.



Testing and Executing the Code

RIPES

https://ripes.me/
https://github.com/mortbopet/Ripes/releases/download/v2.2.6/Ripes-v2.2.6-win-x86_64.zip

Next:

RISCV Micro Controller

RISCV Simulator and Emulators
RISCV Single Board Computer


https://ripes.me/
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o Pakistan Supercomputing Center S -
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