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By chipmunk

Some Background Story
I have been thinking about designing a processor in RTL for a long time with the faintest idea of 
where to begin with. I even started with a simple ALU processor long ago i.e., one which is capable 
of doing some basic ALU operations. It was too crude given that it had no standardized ISA, (had to 
painfully create my own instruction set!) and the execution was sequential i.e., fetch, decode, and 
execute one instruction at a time. Then move to next instruction and so on. This is an example for a 
non-pipelined CPU architecture which has sequential operation. Hence, the throughput is very low. 
So, it was not much of an interesting project to explore and eventually the whole thing was dropped 
somewhere along the way…

Lately, I have been learning and exploring on ISAs, and RISC-V got most of my attention. The 
revolutionary ISA hit the market like tidal waves with relentless innovations backed up by countless 
learning and tool resources, and contributions from around the engineering community. And the 
ultimate beauty of RISC-V is being an open-source ISA. So, I thought: why not get on the 
bandwagon!?

Eventually, the idea converged from “Designing a Processor” to “Designing a RISC-V Processor“. 
The pain of defining your own instruction set is gone now! But a little pain is good for learning. 
Hence, let’s expand the idea to: “Designing a Pipelined RISC-V Processor“. 

Over the next few weeks, I will be demonstrating how to bring this idea to life through the new 
RISC-V CPU Development blog series which will be published here in multiple parts. We will go 
through defining specs, designing and refining architecture, identifying and solving challenges, 
developing RTL, implementing, and testing the CPU on simulation/FPGA board. 

Disclaimer: All the idea to be presented in the blog series, are things I learnt on the 
way with my “baby steps” by exploring different RTL implementations, standards, 
documentations of proven RISC-V processors. The architectures presented in the blog 
are fundamental and the designed CPU is purely for education purpose. Industrial CPU 
architectures are way more complex beyond the scope of this blog. 

Step 1: Naming the CPU
Naming or branding your idea is mandatory to keep you motivated moving forward until you reach 
the goal! We are going to build a quite simplistic processor, so I came up with this fancy name 
“Pequeno“, which means “tiny” in Spanish; the complete name: Pequeno RISC-V CPU aka 
PQR5. Through out the blog series, I will be using this name… 🙂

https://chipmunklogic.com/digital-logic-design/designing-pequeno-risc-v-cpu-from-scratch-part-1-getting-hold-of-the-isa/
https://chipmunklogic.com/digital-logic-design/designing-pequeno-risc-v-cpu-from-scratch-part-1-getting-hold-of-the-isa/
https://riscv.org/about/
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://chipmunklogic.com/author/chipmunklogic/


Step 2: Picking up the ISA
RISC-V has different flavors & extensions in the ISA. Let’s go with the simplest one. RV32I aka 
32-bit Base Integer ISA. The ISA is suitable to build a 32-bit CPU which supports integer 
arithmetic. So here comes the first spec of Pequeno:

Pequeno is a 32-bit RISC-V CPU which supports RV32I ISA.

Step 3: Getting hold of the ISA
RV32I has 37 base instructions of 32-bit, which we plan to implement in Pequeno. So it’s 
imperative that we should have deep understanding of each instruction. I went the hard way to get 
complete hold of the ISA. I learned the full spec and designed my own assembler, pqr5asm, in the 
process and validated it against some of the popular RISC-V assemblers.

RISBUJ

The above six letter word summarizes the types of instructions in RV32I. The 37 instructions fall 
under one of the categories:

• R-type: All integer computation instructions on registers.
• I-type: All integer computation instructions on registers and immediate values. Also 

includes JALR, Load instructions.
• S-type: All Store instructions.
• B-type: All Branch instructions.
• U-type: Special instructions like LUI, AUIPC.
• J-type: Jump instructions like JAL.

32 general purpose registers are available in RISC-V architectures, x0-x31. All registers are 32-bit. 
Among these 32 registers, zero aka x0 register is a useful special register hardwired to zero, it 
cannot be written, and is always read as zero. So what is the use of it? You can use x0 as dummy 
target to dump results you don’t care to read, or use as operand zero, or generating NOP instructions 
to idle CPU. 

This Integer computations instructions are ALU instructions performed on register(s) and/or 12-bit 
immediate values. Load/Store instructions perform storing/loading data between registers and data 
memory. Jump/Branch instructions are used to transfer the control of program to different location. 

Detailed information on each instruction can be found in the RISC-V spec: RISC-V User-Level ISA 
v2.2 
To learn the ISA, the RISC-V spec docs are enough. However, to clarify you can look into the 
implementation of different open cores in RTL.

Apart from 37 base instructions, I have also added 13 pseudo/custom instructions to pqr5asm and 
extended the ISA to 50 instructions. These instructions are derived from base instructions and are 
there to make assembly programmer’s life easier… An e.g is: NOP instruction which is same as 
ADDI x0, x0, 0 which of course does NOTHING in CPU! But it is simpler and easier to interpret in 
the code.

The expectation before we start designing the processor architecture is the complete understanding 
of how each instruction is encoded in 32-bit binary and what is its functionality.

https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
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RISC-V Instruction – Encoding (ref: User-Level ISA v2.2)

PQR5ASM – Assembler for Pequeno
PQR5ASM, the RISC-V RV32I assembler which I developed in Python is available in my github 
here. You can write sample assembly code taking reference from Assembler Instruction Manual. 
Compile it, and see how it translates to 32-bit binary to cement/verify your understanding before 
moving on further…

Pequeno RISC-V CPU – Specifications
• 32-bit CPU, single-issue.
• Classic five-stage RISC pipeline  . Strictly in-order pipeline.
• Compliant to RV32I User-Level ISA v2.2. Supports all 37 base instructions + 13 custom 

instructions.
• Separate bus interface for Instruction & Data memory access. (Why? To be discussed in 

future…)

As said in the previous blog, we would be supporting RV32I ISA. So, the CPU supports only 
integer arithmetic.

All registers in the CPU are 32-bit. Address and data buses are also 32-bit. The CPU assumes the 
classic little endian byte-addressable memory space. Each address corresponds to a byte in the 
address space of the CPU. 0x00 - byte[7:0], 0x01 - byte[15:8] ... 

32-bit word can be accessed at 32-bit aligned addresses i.e., addresses which are multiples of four: 
0x00 - word0, 0x04 - word1 ...

https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
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Pequeno – Address Space

Pequeno is a single-issue CPU, i.e., only one instruction is fetched at a time from memory, and 
issued to be decoded and executed. Pipelined processors with single-issue can have max. IPC = 1 
(or least/best CPI = 1) i.e., the ultimate goal is to execute at the rate of 1 instruction per clock cycle. 
This is theoretically the maximum performance achievable.

Classic five-stage RISC pipeline is the fundamental architecture to understand any other RISC 
architectures. This would make the ideal and simplest choice for our CPU. The architecture of 
Pequeno is built around this five-stage pipeline. Let’s take a deeper dive into the underlying 
concepts.

For simplicity, we will not be supporting timers, interrupts, and exceptions in the CPU 
pipeline. Hence, CSRs and privilege levels need not be implemented as well. RISC-V 
Privileged ISA is therefore not part of the current implementation of Pequeno.

Non-pipelined CPU
Simplest approach to design a CPU is the non-pipelined way. Let’s see couple of design approaches 
for a non-pipelined RISC CPU and understand its drawbacks.

Let’s assume the classic sequence of steps followed by a CPU for instruction execution: Fetch, 
Decode, Execute, Memory Access, and Writeback. 

First design approach is: designing CPU like an FSM with four or five states which does every 
operation sequentially. For eg:

https://riscv.org/wp-content/uploads/2017/05/riscv-privileged-v1.10.pdf
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CPU like an FSM

But this architecture takes a bad hit on instruction execution rate. As it will take multiple clock 
cycles to complete the execution of a single instruction. Say, a register write would take 3 cycles. If 
load/store instruction, memory latency comes into picture as well. This is bad and primitive 
approach to design a CPU. Let’s dump this for good!

Second approach is: instructions may be fetched from instruction memory, decoded, and executed 
by a fully combinatorial logic. The result from ALU is then written back to register file. This whole 
process up to writeback may be done in a single clock cycle. Such a CPU is called single-cycle 
CPU. If the instruction requires data memory access, read/write latency should be taken into 
account. If read/write latency is one clock cycle, store instructions may still finish execution in one 
clock cycle like all other instructions, but load instructions may take one clock cycle extra, as the 
loaded data has to be written back to register file. PC generation logic has to take care of the 
implications of this latency. If the data memory read interface is combinatorial (asynchronous read), 
the CPU becomes truly single-cycle for all instructions.



Single Cycle RISC-V CPU

Main drawback of the architecture is obviously the long critical path through the combinatorial 
logic from fetch to memory/register file write, which constraints the timing performance. However, 
this design approach is simple and suitable for CPUs in low-end microcontrollers where low clock 
speed, power consumption, and area is desirable.



Pipelining CPU
To achieve higher clock speeds and performance, we can segregate the sequential processing of 
instructions by CPU. Each sub-process is then assigned to independent processing units. These 
processing units are cascaded sequentially to form a Pipeline. All units work in parallel and operate 
upon different parts of the instruction execution. Multiple instructions can be processed parallelly in 
this way. This technique to implement instruction-level parallelism is called Instruction Pipelining. 
This execution pipeline constitutes the core of a pipelined CPU. 

 

Pipelining breaks the critical path by segregating the combo logic and adding registers in between

Classic five-stage RISC pipeline has five processing units aka Pipeline Stages. The stages are: 
Fetch (IF), Decode (ID), Execute (EX), Memory Access (MEM), WriteBack (WB). The working 
of the pipeline can be visualized as:

Each clock cycle, different part of an instruction is processed, and each stage processes different 
instruction. If you observe closely, only at @5th cycle: instruction-1 finishes execution. This 
latency is called Pipeline Latency, Δ. This latency is same as the number of pipeline stages. After 
this latency, @6th cycle: instruction-2 finishes execution, @7th cycle: instruction-3, and so on…. 
We can theoretically compute the throughput (Instructions Per Cycle, IPC) as:

N instructions take (Δ+N−1) cycles to execute.

IPC=(Δ+N−1)N∴

Theoretical max. IPC achievable is when N→∞ 

limN→∞(Δ+N−1)N=1 instruction per cycle

https://en.wikipedia.org/wiki/Instruction_pipelining


Thus, pipelining CPU guarantees an execution rate of one instruction per clock cycle. This is the 
max. possible IPC in a single-issue processor. 

By demarcating the critical path to multiple pipeline stages, CPU can now run in much higher clock 
speed as well. Mathematically, this boosts the throughput of pipelined CPU over an equivalent non-
pipelined CPU by a factor, S=(Δ+N−1)N.Δ=Δ, for N→∞. 

This is called Pipeline Speed-up. In simpler words, a pipelined CPU with S stages can work at clock 
speed of S times compared to the non-pipelined one.

Pipelining normally increases area/power consumption but the performance gain is 
worth it.

The mathematical computations assume that the pipeline never stalls, i.e., the data keeps moving 
forward from one stage to another every clock cycle. But in an actual CPU, the pipeline can stall 
due to multiple reasons, primarily due to Structural / Control / Data Dependency. 

An example: register X cannot be read by Nth instruction because X is not written back yet by 
(N−1)th instruction which modified the value of X. This is an example for Data Hazard in 
pipelines. 

Pipeline Hazards are out of scope of at this point of time. We will discuss them in 
upcoming parts of the blog series. 

Pequeno RISC-V CPU – Architecture
Pequeno incorporates classic five-stage RISC pipeline in the architecture. We will implement 
strictly in-order pipeline. In In-order Processors, instructions are fetched, decoded, executed, and 
completed/committed in compiler-generated order. If one instruction stalls, the whole pipeline 
stalls.

In Out-of-order Processors, instructions are fetched and decoded in compiler-generated order, but 
execution can happen in different order. If one instruction stalls, it need not stall the subsequent 
instructions unless there is a dependency. Independent instructions may be allowed to pass forward. 
The execution may still be completed/committed in-order (that’s what happens in most CPUs 
today). This opens doors for implementing various architectural techniques to significantly improve 
the throughput and performance by cutting down clock cycles wasted on stalls and minimizing the 
insertion of bubbles (What are “bubbles”!? Read on…).

Out-of-order Processors are quite complex due to dynamic scheduling of instructions, 
but is now the de-facto pipeline architecture in today’s high-performance CPUs.



 

Pequeno – CPU Architecture

The five pipeline stages are designed as independent units: Fetch Unit (FU), Decode Unit (DU), 
Execution Unit (EXU), Memory Access Unit (MACCU), and WriteBack Unit (WBU).

Fetch Unit (FU): Stage-1 of pipeline which interfaces with instruction memory. FU fetches 
instructions from the instruction memory and send to Decode Unit. FU may contain instruction 
buffers, initial branch logic.

Decode Unit (DU): Stage-2 of pipeline which decodes instructions from FU. Du also initiates read 
access on Register File. The packets from DU and Register File are retimed to be in sync and sent 
together to Execution Unit.

Execution Unit (EXU): Stage-3 of pipeline which validates and executes all decoded instructions 
from DU. Invalid/unsupported instructions are not allowed to move further in the pipeline. They 
become bubbles. ALU takes care of all integer arithmetic and logical instructions. Branch Unit 
takes care of jump/branch instructions. Load-Store Unit takes care of load/store instructions which 
require memory access.

Memory Access Unit (MACCU): Stage-4 of pipeline which interfaces with data memory. MACCU 
initiates all memory access as directed by EXU. Data memory is the addressing space which may 
constitute data RAM, memory-mapped IO peripherals, bridges, interconnects etc. 

WriteBack Unit (WBU): Stage-5 or the final stage of pipeline. Instructions finish execution here. 
WBU is responsible for writing back results from EXU/MACCU (load-data) to Register File.

Interface between Pipeline Stages in the CPU
Between pipeline stages, valid-ready handshaking is implemented. This is not so obvious at first 
look. Each stage registers and sends a packet to the next stage. The packet may be 
instruction/control/data information to be used by next stage or by subsequent stages. The packet is 
validated by valid signal. If invalid packet, it is called a Bubble in the pipeline (read about Pipeline 
Stalls and Bubbles here). Bubble is nothing but “hole” in the pipeline which just moves forward 
through the pipeline doing nothing in effect. This is analogous to NOP instruction. But don’t think 

https://en.wikipedia.org/wiki/Pipeline_stall


they are of no use! We will see one of their uses when we discuss about Pipeline Hazards in 
upcoming parts. Following table defines a Bubble in Pequeno’s instruction pipeline.

Instruction in the packet packet valid Bubble in the pipeline?
NOP HIGH/LOW YES
XXX LOW YES
Table: Defining Bubble in the Instruction Pipeline

Each stage can also stall the previous stage by asserting stall signal. Once stalled, the stage will 
hold their packet until stall goes down. This signal is same as inverted ready signal. In in-order 
processors, stall generated at any stage acts like a global stall, as it eventually stalls the whole 
pipeline.

 

Handshaking between Pipeline Stages

The flush signal is used to flush the pipeline. Flushing will invalidate all packets registered by the 
previous stages in one go, because they are identified to be not useful anymore. 

 

Pipeline Flush

An example is when the pipeline has fetched and decoded instructions from wrong branch after a 
jump/branch instruction and it is identified to be wrong only at the execution stage. Now the 
pipeline should be flushed and instruction has to be fetched from the correct branch!

Pipeline Hazards – Implications on Performance
Hazards in instruction pipeline of CPU are dependencies which disrupt the normal execution in the 
pipeline. When a hazard occurs, instruction cannot execute in the designated clock cycle as it may 
result in incorrect computation results or flow of control. As a result, the pipeline may be forced to 
stall until the instruction can be successfully executed. 

https://en.wikipedia.org/wiki/Pipeline_stall


Pipeline Stall due to Data Dependency

In the above example, CPU performs in-order execution of instructions in the compiler-generated 
order. Let’s assume instruction i2 has some dependency on i1, say some register has to be read by i2
, but this register is also being modified by the previous instruction i1. Hence, i2 has to wait until i1 
writes back the result to register file, otherwise older data will be decoded and read from register 
file and used by Execute stage. To avoid this data incoherency, i2 is forced to stall by three clock 
cycles. Bubbles inserted in the pipeline represent the stall or wait states. Only when i1 is completed, 
i2 is decoded. Finally, i2 finishes execution in 10th clock cycle instead of 7th. Latency of three 
clock cycles was introduced due to the stall caused by data dependency. How does this latency 
affect the CPU performance?

We ideally expect our CPU to work at full throughput i.e., CPI = 1. But when pipeline stalls, it 
reduces the throughput/performance of the CPU because CPI increases. For non-ideal CPU:

Clock cycles Per Instruction=1+Stall cycles per instruction. 
   CPInon-ideal⟹ =CPIideal+Stall cycles per instruction

Pipeline Hazards – Types & Mitigation
There are different ways in which a hazard can occur in the pipeline. Pipeline hazards can be 
classified into three types:

• Structural Hazards
• Control Hazards
• Data Hazards

Structural Hazards
Structural Hazards occur due to hardware resource conflict. i.e., when two stages of the pipeline 
want to access the same resource. For eg: two instructions require access to memory in the same 
clock cycle.



Structural Hazard due to Memory Access Conflict

In the above example, CPU has a single memory for both instruction and data. Fetch stage accesses 
the memory every clock cycle to fetch next instruction. Hence, instructions at Fetch stage and 
Memory Access stage may get conflicted if an earlier instruction at Memory Access stage also 
needs memory access. This will force the CPU to add stall cycles and Fetch stage has to wait until 
the resource (memory) is relinquished by the instruction in Memory Access stage. 

Mitigating Structural Hazards

Some ways to mitigate structural hazards are:

• Stall the pipeline until the resource is available.
• Duplicate resources so that there will be no conflict at all.
• Pipeline resources so that two instructions will be at different pipeline stages of the resource.

Let’s analyze different scenarios which may cause structural hazard in the pipeline of Pequeno and 
how to resolve it. We have no intention to use stalling as an option to mitigate the structural 
hazards!

Scenario Solution
1) Memory access 
conflict b/w Fetch and 
Memory Access stages

 Separate instruction and data memory access paths. Use instruction ✅
and data caches with a single physical memory or physically separate 
instruction and data memories.

2) Register File access 
conflict b/w Decode and 
WriteBack stages

 Separate ports for read and write. Register File to be designed with ✅
two read ports and one write port. WB stage uses write port. ID stage 
uses read ports. Both of them may read/write to Register File in the 
same clock cycle without conflicts.

3) ALU conflict b/w 
different stages and 

 Exclusive ALU in Execute stage. If any other stage requires to do ✅
operations like address computation (for eg: IF needs to do PC 



Execute Stage increment every cycle), use their own local ALU.
Table: Mitigating Mechanisms for Structural Hazards

In Pequeno’s architecture, we implement the above three solutions to mitigate all kinds of structural 
hazards.

Control Hazards
Control Hazards are caused by Jump/Branch instructions. Jump/Branch instructions are the flow 
control instructions in the ISA of CPU. When the control reaches a Jump/Branch instruction, CPU 
has to make a decide whether to take the branch or not. One of the following actions should be 
taken.

• Fetch the next instruction at PC+4 (branch not taken) OR
• Fetch the instruction at the branch target address (branch taken).

Whether the decision was right or wrong is figured only at the Execute stage where the result of the 
branch instruction is computed. Depending on whether branch taken or not taken, branch address 
(address to which CPU should branch out) is resolved. If the decision made earlier was wrong, all 
the instructions in the pipeline fetched and decoded until that clock cycle should be discarded. 
Because those instructions should not be executed at all! This is done by flushing the pipeline and 
fetching the instruction at branch address in the next clock cycle. Flushing invalidate the 
instructions and convert them into NOPs or bubbles. This incurs significant amount of clock cycles 
as penalty. This is called branch penalty. Control hazards thus have the worst effect on the 
performance of CPU.

ASM program with potential control hazard
mvi x1, 0x100      # i1
mvi x2, 0x200      # i2
mvi x3, 0x000      # i3
bne x1, x2, EXIT   # i4: EXIT branch to be taken because x1 != x2
mvi x3, 0x001      # i5: This instruction shouldn't be executed!
...
EXIT:
...                # i10: This instruction should be executed after i4



Control Hazard and Flushing

In the above example, i10 completes the execution in 10th clock cycle, but it should have completed 
the execution in 7th clock cycle. A penalty of three clock cycles was incurred because wrong branch 
(i5) was taken. Flush had to be done in the pipeline when this was identified by Execute stage in 4th 
clock cycle. How this will impact the CPU performance?

If a program running in above CPU has 30% branch instructions, CPI will become:

CPI=(CPIideal×0.70)+(3×0.30)≈2

The CPU performance cuts down by 50%!

Mitigating Control Hazards

To mitigate control hazards, we can employ some strategies in the architecture…

• Simply stall the pipeline if the instruction is identified as branch. This decoding logic can be 
implemented in Fetch stage itself. Once the branch instruction is executed and branch 
address is resolved, next instruction can be fetched and the pipeline can resume.

• Add a dedicated branch logic in Fetch stage like Branch Prediction.

The essence of branch prediction is: we employ some kind of a prediction logic in Fetch stage that 
will guess whether the branch should be taken or not. In the next clock cycle, the guessed 
instruction is fetched. This will be fetched either from PC+4 (predicts branch not taken) or branch 
target address (predicts branch taken). Now there are two possibilities:

https://en.wikipedia.org/wiki/Classic_RISC_pipeline


• If the prediction is found to be correct at Execute stage, do nothing, pipeline can continue 
processing.

• If the prediction is found to be wrong, flush the pipeline, fetch the correct instruction from 
the branch address resolved by Execute stage. This incurs branch penalty.

As you can see, branch prediction can still incur branch penalty if it makes incorrect prediction. 
Design goal should be to reduce the probability of making incorrect prediction. The CPU 
performance heavily depends on how “good” is the prediction algorithm. Complex techniques like 
Dynamic Branch Prediction keep the history of instructions to predict correctly at orders of 80−90% 
probability.

To mitigate control hazards in Pequeno, we will implement a simple branch prediction logic. More 
details to be revealed in the upcoming blog where we design Fetch Unit.

Scenario Solution
1) Control Hazards due to Jump/Branch 
instructions

 Add a simple branch prediction logic in Fetch✅  
stage.

Table: Mitigating Mechanisms for Control Hazards

Data Hazards
Data Hazards occur when an instruction’s execution has data dependency on the results of some 
previous instruction that is still being processed in the pipeline. Let’s visit the three types of data 
hazards with examples to understand the concept better.

WAW (Write-After-Write)

Suppose an instruction i1 writes result to a register x. The next instruction i2 also writes result to the 
same register. Any subsequent instructions in the program order should be reading the result of i2 at 
x. Otherwise, data integrity is lost. This type of data dependency is called output dependency which 
may lead to WAW data hazards.

ASM program with potential WAW hazard
add x1, x2, x3  # i1; x1 = x2 + x3
add x1, x4, x5  # i2; x1 = x4 + x5
.
.
add x5, x1, x2  # This instruction should be reading the result of i2 @x1

WAR (Write-After-Read)

Suppose an instruction i1 reads a register x. The next instruction i2 writes result to the same 
register. Here, i1 should read the older value of x, not the result of i2. If i2 writes result to x before it 
is read by i1, it results in data hazard. This type of data dependency is called anti-dependency which 
may lead to WAR data hazards.

ASM program with potential WAR hazard
add x1, x2, x3  # i1; x1 = x2 + x3 -- should be reading the older value @x2
add x2, x4, x5  # i2; x2 = x4 + x5 -- new value written @x2

RAW (Read-After-Write)

https://en.wikipedia.org/wiki/Branch_predictor


Suppose an instruction i1 writes result to a register x. The next instruction i2 reads the same 
register. Here, i2 should read the value written by i1 to the register x, not the older value. This type 
of data dependency is called true dependency which may lead to RAW data hazards. 

ASM program with potential RAW hazard
add x1, x2, x3  # i1; x1 = x2 + x3
add x5, x1, x4  # i2; x5 = x1 + x4 -- should be reading the value written by i1 
@x1

This is the most common and predominant type of data hazard in pipelined CPUs.

Mitigating Data Hazards

To mitigate data hazards in in-order CPUs, we can employ a few techniques:

• Stall the pipeline on detecting data dependency (refer to the first figure). Decode stage can 
wait until execution the previous instruction is completed. 

• Compile Re-scheduling: Compiler re-arranges the code to avoid data hazards by scheduling 
it for later. The intention here is to avoid stalling without affecting the integrity of flow of 
control in the program, but this may not be possible to do always. Compiler can also insert 
NOP instructions in between two instructions that have data dependency. But this will incur 
stalls, and hence is a performance hit.

Compiler Re-scheduling
add x1, x2, x3  # i1 being decoded
# Compiler inserts NOP or any other non-dependent instructions
# Compiler inserts 3 NOPs here because 3 stages ahead of Decode in the 
pipeline...
NOP             # NOP being decoded; i1 in Execute stage
NOP             # NOP being decoded; i1 in Memory Access stage
NOP             # NOP being decoded; i1 in WriteBack stage
add x5, x1, x4  # i2 being decoded; by this time i1 would have completed 
execution 
                # and hence reads correct value @x1

• Data/Operand Forwarding: This is the prominent architectural solution in in-order CPUs to 
mitigate RAW data hazards. Let’s analyze the CPU pipeline to understand the idea behind 
this technique.

Data/Operand Forwarding

Assume two adjacent instructions i1 and i2 have RAW data dependency between them as both are 
accessing a register x. The CPU should stall instruction i2 until i1 writes back the result to the 
register x. If the CPU has no stalling mechanism, the older value is read by i2 from x at Decode 
stage in 3rd clock cycle. In the 4th clock cycle, i2 gets executed with wrong value of x!



RAW Data Hazard in action!

If you look closely at the pipeline, we already have the result of i1 available in the 3rd clock cycle. 
It is not written back to register file of course, but still the result is available at the output of Execute 
stage. So, if we are somehow able to detect the data dependency and then “forward” this data to 
Execute stage input, then the next instruction can use the forwarded data instead of the data from 
Decode stage. Thus data hazard is mitigated! The idea looks like this:

Data Forwarding

This is called Data/Operand Forwarding or Data/Operand Bypassing . We forward the data in 
forward direction in time, so that trailing dependent instructions in the pipeline can access this 
bypassed data for execution at Execute stage. 

The idea can be extended across different stages. In a 5-stage pipeline executing instructions in 
order i1,i2,....in , data dependency can be there between:

• i1 and i2 – Need to bypass between Execute and Decode stage outputs.
• i1 and i3 – Need to bypass between Memory Access and Decode stage outputs.
• i1 and i4 – Need to bypass between WriteBack and Decode stage outputs.

Architectural solution to mitigate RAW data hazards originating at any stage of the pipeline would 
look like:

 

Data Forwarding to mitigate RAW Hazards in 5-stage Pipeline

Pipeline Interlock

Consider the following scenario:

Pipeline Interlock Scenario
lw x1, x2, 0xABC  # i1: Load data from data at addr = [x2 + 0xABC] --> x1
add x3, x1, x1    # i2: x3 = x1 + x1 ; x1 should contain value loaded from 
memory



There is a data dependency between two adjacent instructions i1 and i2 where the first instruction is 
a Load. This is a special case of data hazard. Here, we cannot execute i2 until data is loaded to x1. 
So, the question is can we still mitigate this data hazard with data forwarding? The load data will be 
available only at Memory Access stage of i1, and this has to be forwarded to Decode stage of i2 to 
prevent the hazard. This requirement would look like:

 

Pipeline Interlock

Say, the load data is available at 4th cycle at Memory Access stage, you need to “forward” this data 
to 3rd cycle to the Decode stage output of i2 (Why 3rd cycle? Because in 4th cycle i2 would have 
completed execution in Execute stage already!) . Essentially, you are trying to forward present data 
to the past, which impossible unless your CPU time travel! This is not data forwarding but “data 
backwarding”  ….😀

Data Forwarding can be done only in forward direction in time.

This type of data hazard is called Pipeline Interlock. The only way to get around this by stalling the 
pipeline by one clock cycle by inserting a bubble when this data dependency is detected.

 

NOP aka Bubble is inserted between i1 and i2. This delays i2 by one cycle, thus data forwarding 
can now forward load data from Memory Access stage to Decode stage output.

So far, we saw only how to mitigate RAW data hazards. So, what about WAW and WAR hazards? 
Well, RISC-V architectures are inherently resistant to WAW and WAR hazards for in-order pipeline 
implementations! 

• All writeback to registers happens in the order of issuing. Data written back is always 
overwritten by later instruction which writes to the same register. So, WAW hazard never 
happens!



• Writeback is the last stage of pipeline. By the time writeback happens, read would have 
already completed execution with older data successfully. So WAR hazard never happens!

To mitigate RAW data hazards in Pequeno, we will implement data forwarding with pipeline 
interlock detection feature hardware. More details to be revealed in the upcoming blog where we 
design Data Forwarding logic.

Scenario Solution
1) WAW/WAR Data Hazards  Inherently mitigated by the in-order pipeline architecture .✅
2) RAW Data Hazards  Data forwarding + pipeline interlock detection hardware✅
Table: Mitigating Mechanisms for Data Hazards

Modified Architecture of Pequeno
We have understood and analyzed potential various pipeline hazards that could fail instruction 
execution by the existing CPU architecture. We also devised solutions and mechanisms to mitigate 
them. Let’s incorporate the necessary micro-architectures and draft the final architecture of Pequeno 
RISC-V CPU which is devoid of all kinds of pipeline hazards!

 

Pequeno – Modified CPU Architecture to mitigate all Pipeline Hazards

Fetch Unit
Fetch Unit is the Stage-1 of the CPU pipeline which interfaces with instruction memory. FU fetches 
instructions from the instruction memory and sends the fetched instruction to Decode Unit (DU). 
As discussed in the modified architecture of Pequeno in Part-3, FU accommodates a branch 
prediction logic and flush support.

https://chipmunklogic.com/digital-logic-design/designing-pequeno-risc-v-cpu-from-scratch-part-3-dealing-with-pipeline-hazards/


Interfaces
Let’s define the interfaces for Fetch Unit.

Instruction Access Interface To access instruction memory/cache
DU Interface To send the fetched instruction, control/data to Decode Unit
Flush Interface To flush FU externally
Table: Fetch Unit – Interfaces

Fetch Unit – Interfaces

Instruction Access Interface
The core functionality of FU in the CPU is instruction access. Instruction Access I/F is used for 
that purpose. Instructions are stored in instruction memory (RAM) during execution. Modern CPUs 
fetch instructions from cache memory rather than directly from the instruction memory. Instruction 
Cache (in computer architecture terms, this is called a Primary Cache or L1 Cache) is located 
closer to CPU and facilitates faster instruction access by caching/storing frequently accessed 
instructions and pre-fetching a larger chunk of instructions in the vicinity. Thus, there is no need of 
continuously accessing the slower main memory (RAM). Hence, most of the instructions are 
accessed fast, directly from the cache. 

Caches are complex designs in computer architecture. Read more about caches 
here.

CPU doesn’t directly access the interface with an instruction cache/memory. There will be a 
cache/memory controller in between to control the memory access between them.

https://www.geeksforgeeks.org/cache-memory-in-computer-organization/


Fetch Unit – Instruction Fetch

It would be a good idea to define a standard interface so that any standard instruction memory/cache 
(IMEM) can be plugged easily to our CPU with minimal or no glue logic. Let’s define two 
interfaces for instruction access. Request I/F handles requests from FU to instruction memory. 
Response I/F handles the responses from instruction memory to FU. We will define a simple valid-
ready based Request & Response I/Fs for FU, as this is easy to translate to bus protocols like APB, 
AXI, if required.

Fetch Unit – Request & Response I/F

Instruction access requires the address of instruction in the memory. Address to be requested via 
Request I/F is simply the PC generated by FU. Rather than ready, we will use stall signal 
terminology at FU interfaces, which is the inverted version of ready in behavior. Cache controllers 
usually have a stall signal to stall requests from processor. This signal is represented by cpu_stall. 
The response from memory is the fetched instruction received via Response I/F. Along with the 

http://www.cjdrake.com/readyvalid-protocol-primer.html
http://www.cjdrake.com/readyvalid-protocol-primer.html


fetched instruction, the response should also include the corresponding PC. The PC serves as the ID 
to identify the request to which the response has been received. Or in other words, it indicates the 
address of the fetched instruction. This is a vital information which will be required by next stages 
of the CPU pipeline (How? We will see it soon!). Therefore, the fetched instruction and its PC 
constitute the response packet to FU. CPU may also need to stall responses from instruction 
memory at times when the internal pipeline is stalled. This signal is represented by mem_stall. 

At this point, let’s define instruction packet in our CPU pipeline = {instruction, PC}

PC Generation Logic
At the heart of FU is the PC generation logic which controls Request I/F. Since we are designing a 
32-bit CPU, PC should be generated in increments of four. This logic once comes out of reset, 
generates PC every clock cycle. The on-reset value of PC can be hard-coded. This is the address 
from which the instructions are fetched and executed by CPU after coming out of reset i.e., the very 
first instruction’s address in the memory. PC generation is free-running logic stalled only by 
cpu_stall. 

Free-running PC can be bypassed by Flush I/F and internal branch prediction logic. The PC 
generation algorithm is implemented as:

Fetch Unit – PC Generation Logic



Instruction Buffers
There are two back-to-back instruction buffers inside FU. Buffer-1 buffers the fetched instruction 
from instruction memory. Buffer-1 has direct access to Response I/F. Buffer-2 buffers the 
instruction from Buffer-1 and then sent it to DU via DU I/F. These two buffers form the internal 
instruction pipeline in FU. 

Fetch Unit – Instruction Buffers

Branch Prediction Logic
As discussed in the previous blog, we have to add a branch prediction logic in FU to mitigate 
control hazards. We will implement a simple and static branch prediction algorithm. Major aspects 
of the algorithm are:

• Unconditional jumps are always taken. 
• If Branch instruction, take the branch if it’s a backward jump. Because the chances are: 

• This instruction could be part of the loop exit check of some do-while loop. There is 
a higher probability to be correct if we take the branch in this case. 

• If Branch instruction, do not take it if it’s a forward jump. Because the chances are: 
• This instruction could be part of the loop entry check of some for loop or while loop. 

There is a higher probability to be correct if we do not take the branch and continue 
with the next instruction. 

• This instruction could be part of some if-else statement. In this case, we always 
assume that if condition is true and continue with the next instruction. This bargain 
theoretically has the probability of 50% to be correct. 



Fetch Unit – Branch Prediction Logic

You may want to check pseudo-assembly code for: if-else, for loop, while loop, 
do-while loop. I used ChatGPT to generate pseudo-assembly code and reach the 
conclusions for branch prediction! 

Buffer-1 instruction packet is monitored and analyzed by Branch Prediction Logic and generates 
the branch prediction signal: branch_taken. The branch prediction signal is then registered and 
piped forward in synchronization with the instruction packet sent to DU. Branch prediction signal is 
sent to DU via DU I/F.

DU Interface
This is the primary interface between Fetch Unit and Decode Unit to send the payload. The payload 
includes the fetched instruction and branch prediction information. 

DU Interface to send payload

Since this is the interface between two pipeline stages of the CPU, valid-ready I/F is implemented. 
Following signals constitute the DU I/F:

instruction packet {instruction, PC} to DU
branch_taken Branch prediction signal to DU

https://chat.openai.com/


bubble Inverted version of valid to DU
stall Inverted version of ready from DU
Table: Decode Unit Instruction I/F

Refer to Part-2 to refresh the discussion about the valid-ready I/F designed 
between the pipeline stages of Pequeno!

Pipeline Stall and Flush in Pequeno
In previous blogs, we discussed the concept and importance of stall and flush in CPU pipeline. We 
also discussed various scenarios in Pequeno architecture when it would be required to stall or flush. 
Therefore, appropriate stall and flush logic have to be incorporated in every pipeline stage of the 
CPU. It is important to identify the conditions at which stall or flush needs to be generated in a 
stage. And also what part of logic in the stage needs to be stalled and flushed.

Some initial thoughts before implementing stall and flush logic:

• A pipeline stage may be stalled externally or by internally generated conditions. 
• A pipeline stage may be flushed externally or by internally generated conditions. 
• There is no centralized stall or flush generation logic in Pequeno. Every stage may have its 

own stall and flush generation logic. 
• A stage can be stalled only by the next stage in the pipeline. The stall from any stage trickles 

up the pipeline eventually and stalls the entire pipeline in the upstream. 

Stall in pipelines is analogous to ripple effect seen in traffic

• A stage can be flushed by any of the stages in the downstream pipeline. This is called a 
pipeline flush, because the whole pipeline in the upstream needs to be flushed 
simultaneously. In Pequeno, branch miss in Execution Unit (EXU) is the only scenario 
where a pipeline flush is required. 

 

Stall and Flush Network in Pequeno

Refer to Part-2 to revisit stall and flush behavior in the CPU pipeline.

Stall logic contains the logic to generate local and external stall. Flush logic contains the logic to 
generate local and pipeline flush.

https://chipmunklogic.com/digital-logic-design/designing-pequeno-risc-v-cpu-from-scratch-part-2-specifications-and-architecture/
https://chipmunklogic.com/digital-logic-design/designing-pequeno-risc-v-cpu-from-scratch-part-2-specifications-and-architecture/


Local stall is generated internally and used locally to stall the operation of the stage. External stall 
is generated internally and sent externally to the next stage in the upstream pipeline. Local and 
external stalls are generated based on internal conditions and external stall from the next stage in the 
downstream pipeline.

Local flush is the flush which is generated internally and used locally to flush the stage. External 
flush or Pipeline flush is generated internally and sent externally to the upstream pipeline. This 
flushes all stages in the upstream simultaneously. Local and external flushes are generated based on 
internal conditions.

Local and External Stall/Flush in Pipeline Stages

Stall Logic
Only DU can externally stall the operation of FU. When DU asserts stall, FU’s internal instruction 
pipeline (Buffer-1 –>Buffer-2) should be stalled immediately, and it should also assert mem_stall to 
IMEM as FU cannot accept anymore packets from IMEM. Depending on the pipeline/buffering 
depth in the IMEM, PC Generation Logic may also gets eventually stalled by cpu_stall from IMEM 
as no more requests may be accepted by IMEM. There are no internal conditions in FU that 
generates local stall.

Flush Logic
Only EXU can externally flush FU. EXU initiates branch_flush in the CPU instruction pipeline 
with the address of the next instruction to be fetched after flushing the pipeline (branch_pc). FU has 
provided Flush I/F so that external flush can be accepted.



Buffer-1, Buffer-2, PC Generation Logic in FU are flushed by branch_flush. The signal 
branch_taken from Branch Prediction Logic also acts like a local flush to Buffer-1, PC Generation 
Logic. If the branch is taken:

• Next instruction should be fetched from the PC of branch prediction. Therefore, PC 
Generation Logic should be flushed and next PC should be = branch_pc. 

• Next instruction at Buffer-1 should be flushed and invalidated i.e., NOP/bubble is inserted. 

Figure: Buffer-1 and Buffer-2 functionality

Wonder why Buffer-2 is not flushed by branch_taken? Because the branch instruction (which is 
responsible for the flush generation) from Buffer-1 should be buffered at Buffer-2 in the next clock 
cycle, and allowed to move forward in the pipeline for execution. This instruction shouldn’t be 
flushed off!

Instruction memory pipeline should also be flushed appropriately. IMEM flush mem_flush is 
generated from branch_flush and branch_taken. 

Architecture
Let’s integrate all the micro-architectures we designed so far to complete the architecture of Fetch 
Unit.



Fetch Unit – Architecture

Decode Unit
Decode Unit (DU) is the Stage-2 of the CPU pipeline which decodes the instructions from Fetch 
Unit (FU), and send them to Execution Unit (EXU). It is also responsible for decoding the register 
addresses and sending them to Register File for register read operation.

Interfaces
Let’s define the interfaces for Decode Unit.

FU Interface To receive instruction, control/data from Fetch Unit
Register File Interface To access the source registers (rs0, rs1) for register read operation
EXU Interface To send the decoded instruction, control/data to Execution Unit
Flush Interface To flush DU externally
Table: Decode Unit – Interfaces

Decode Unit – Interfaces

FU Interface
This is the primary interface between Fetch Unit and Decode Unit to receive the payload. The 
payload includes the fetched instruction and branch prediction information. This interface was 
already discussed in the previous part.

https://chipmunklogic.com/digital-logic-design/designing-pequeno-risc-v-cpu-from-scratch-part-4-fetch-unit/


EXU Interface
This is the primary interface between Decode Unit and Execution Unit to send the payload. The 
payload includes the decoded instruction, branch prediction information, and decode data.

EXU Interface to send payload

Following are the instruction and branch prediction signals that constitute the EXU I/F:

instruction packet {instruction, PC} to EXU
branch_taken Branch prediction signal to EXU; simply piped forward: FU->DU->EXU
bubble Inverted version of valid to EXU
stall Inverted version of ready from EXU
Instruction packet and branch prediction signals to EXU

Decode data are vital information decoded by DU from the fetched instruction and sent to EXU. 
Let’s gather what information would be required by EXU for the execution of an instruction.

1. Opcode, funct3, funct7: to identify the operation to be performed by EXU on the operands. 
2. Operands: depending on the opcode, the operands can be register data (rs0, rs1), register 

address for writeback (rdt), or 12-bit/20-bit immediate values. 
3. Instruction type: to identify which operands/immediate values have to processed. 

The decoding can be tricky. If you have correctly understood the ISA and the instruction 
structuring, patterns can be identified for different types of instructions. Identifying patterns helps to 
design the decoding logic in DU.

Following information are decoded and sent to EXU via EXU I/F.

opcode Instruction opcode.
opcode = instruction[6:0]

rs0, rs1, rdt

Source registers0/1, Destination register.
rs0 = instruction[19:15]
rs1 = instruction[24:20]
rdt = instruction[11:7]

funct3/funct7 funct3 = instruction[14:12]
funct7 = instruction[31:25]

is_<r/i/s/b/u/
j>_type

Instruction type.
1) R-type –> (opcode == 0x33)
2) I-type –> (opcode == 0x67) or (opcode == 0x03) or (opcode == 0x13)
3) S-type –> (opcode == 0x23)
4) B-type –> (opcode == 0x63)



5) U-type –> (opcode == 0x37) or (opcode == 0x17)
6) J-type –> (opcode == 0x6F) 

alu_opcode[3:0]

ALU opcode. 
Instructions which require the use of ALU are categorized as ALU 
instructions.
They are:
1) R-type instructions
2) I-type instructions
3) U-type instructions
LUI & AUIPC instructions require adding operation, 
hence considered as ALU instructions. 
R-type: alu_opcode = {funct3, funct7[5]}
I-type : alu_opcode = {funct3, funct7[5]} // SLLI/SRLI/SRAI instructions
= {funct3, 1’b0}
U-type: alu_opcode = 4’b0000

<i/s/b/u/
j>_type_imm

Immediate value.
1) I-type imm[11:0] = instruction[31:20]
2) S-type imm[11:0] = {instruction[31:25], instruction[11:7]}
3) B-type imm[11:0] = {instruction[31], instruction[7], instruction[30:25], 
instruction[11:8]}
4) U-type imm[19:0] = instruction[31:12]
5) J-type imm[19:0] = {instruction[31], instruction[19:12], instruction[20], 
instruction[30:21]}

Decode data to EXU

EXU will use this information to de-mux the data to appropriate execution sub-units and execute 
the instruction.

Refer to Part-1 to refresh the ISA and understand the reasoning behind the 
decoding logic used by Decode Unit.

Register File Interface
For R-type instructions, source registers rs1, rs2, have to be decoded and read. The data read from 
the registers are the operands. All the general purpose user registers are present in Register File 
outside DU. Register File Interface is used by DU to send rs0, rs1 addresses to Register File for 
register access. Along with the payload, the data read from the Register File should also be sent to 
EXU in the same clock cycle.

Decode Unit and Register File interaction with EXU

https://chipmunklogic.com/digital-logic-design/designing-pequeno-risc-v-cpu-from-scratch-part-1-getting-hold-of-the-isa/


Register File requires one cycle to read a register. DU takes one cycle to register the payload to be 
sent to EXU. The source register addresses are hence decoded directly from FU instruction packet 
by combinatorial logic. This ensures that the timing of 1) Payload from DU to EXU and 2) Data 
from Register File to EXU are synchronized.

Stall Logic
Only EXU can externally stall the operation of DU. When EXU asserts stall, DU’s internal 
instruction pipeline should be stalled immediately, and it should also assert stall to FU as it cannot 
accept anymore packets from FU. Register File should be stalled together with DU for synchronized 
operation as both of them are at the same stage of the 5-stage pipeline of the CPU. Hence, DU feeds 
forward the external stall from EXU to Register File. There are no internal conditions in DU that 
generates local stall.

Flush Logic
Only EXU can externally flush FU. EXU initiates branch_flush in the CPU instruction pipeline 
with the address of the next instruction to be fetched after flushing the pipeline (branch_pc). DU 
has provided Flush I/F so that external flush can be accepted.

The internal pipeline is flushed by branch_flush. The branch_flush from EXU should immediately 
invalidate the DU instruction to EXU with 0 cycle delay. This is to avoid potential control hazard in 
EXU in the next clock cycle.

In the design of Fetch Unit, we didn't invalidate the FU instruction to DU with 
0 cycle delay on receiving branch_flush. This is because the DU will also be in 
flush in the next clock cycle, hence no control hazard can happen in DU. So, it 
is not necessary to invalidate the FU instruction. The same idea applies to the 
instruction from IMEM to FU.



The above flow chart represents how the instruction packet and branch prediction data from FU are 
buffered in DU in the instruction pipeline. Only single stage of buffering is used in DU.

Architecture
Let’s integrate all the micro-architectures we designed so far to complete the architecture of Decode 
Unit.

Decode Unit – Architecture



Register File
In RISC-V CPUs, the register file is a critical component that consists of a set of general purpose 
registers used for data storage during execution. Pequeno CPU has 32 general-purpose registers of 
size 32-bit (x0–x31). 

• The register x0 is called zero register. It is hard wired to a constant value 0, providing a 
useful default value which can be used with other instructions. Say, you want to initialize 
another register to 0. It is as simple as mv x1, x0. 

• x1-x31 are general purpose registers to hold intermediate data, addresses, and results of 
arithmetic or logic operations. 

Interfaces
In the CPU’s architecture, which we designed in Part-2, Register File requires two access interfaces. 

Read Access Interface For read access from Decode Unit (DU)
The read data is sent to Execution Unit (EXU)

Write Access Interface For writeback from WriteBack Unit (WBU)

 

Register File – Interfaces

Read Access Interface
This interface is used to read the register at the address sent by DU. Some instructions for e.g., 
ADD, require two source register operands rs1, rs2. Therefore, two read ports are required at Read 
Access I/F, to read two registers simultaneously. The read access should be single-cycle access so 
that the read data is sent to EXU along with the payload of DU in the same clock cycle. The read 
data and the DU payload are thus synchronized in the pipeline.

Write Access Interface
This interface is used to writeback the result of execution to the register at the address sent by the 
WBU. Only one destination register, rdt, is written at the end of execution. Hence, one write port is 
sufficient. The write access should be single-cycle access.

Stall and Flush Logic
Since DU and Register File are required to be in sync at the same stage of pipeline, they should stall 
together always (Why? Check the block diagram from the last part!). For example, if DU gets 
stalled, Register File should not pump out the read data to EXU, as it will corrupt the pipeline. 
Register File should also stall in this scenario. This is ensured by generating the read_enable to 
Register File by inverting the stall signal to DU. When stall is active, read_enable is driven low and 
the previous data is retained at the read data output, effectively stalling the Register File operation.

https://chipmunklogic.com/digital-logic-design/designing-pequeno-risc-v-cpu-from-scratch-part-5-decode-unit/
https://chipmunklogic.com/digital-logic-design/designing-pequeno-risc-v-cpu-from-scratch-part-2-specifications-and-architecture/


Since Register File doesn’t send any instruction packet to EXU, it doesn’t require any flushing 
logic. Flushing logic needs to be taken care only inside the DU.

Architecture
To summarize, Register File is designed with two independent read ports and one write port. 
Both read and write accesses are single-cycle. The read data is registered. The final architecture 
would look like:

 

Register File – Architecture
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