
Computer Programming
by: Tassadaq Hussain

Director Centre for AI and BigData
Professor Department of Electrical Engineering

Namal University Mianwali

Collaborations:
Barcelona Supercomputing Center, Spain

European Network on High Performance and Embedded Architecture and Compilation
Pakistan Supercomputing Center

 Range of Applications

Introduction to C Programming

C
 Standard C (often just called "C") is a programming

languages used to write software, but they differ in
their target environments, constraints, and some
aspects of functionality.

 Embedded C can be considered as the subset of C
language. It uses same core syntax as C.

 Embedded C programs need cross-compliers to
compile and generate HEX code

 Embedded C is designed for Computer Programming
with specific constraints, hardware interaction
requirements, and specialized development tools.

Introduction to Embedded C Programming

A structural and programming language used by
developers to create desktop-based applications

Target Environment
An extension of C primarily used to develop
microcontroller based applications.

Typically used on systems with more resources.
Memory Constraint

Often used in environments with limited resources
(memory, processing power).

Hardware interactions are managed by operating system
or libraries, unless used in system-level programming.

Hardware Interaction
Interacts directly with hardware components, such as
registers, I/O ports, and peripheral devices.

Uses standard libraries provided by the C standard
library (e.g., stdio.h, stdlib.h) and other platform-specific
or third-party libraries.

Libraries and Extensions
Uses specialized libraries and extensions for embedded
systems (e.g., specific APIs for handling hardware
interrupts, timers, and serial communication).

VS

Introduction to Embedded C Programming

Typically uses general-purpose IDEs (e.g., Visual Studio,
Eclipse) and compilers (e.g., GCC, Clang).

Development Tools
Specific Integrated Development Environments (IDEs),
compilers, and debuggers designed for embedded system
development (e.g., Keil, IAR, MPLAB).

It can be used in real-time applications, but it is not
inherently designed for real-time constraints and may
rely on external real-time extensions or operating
systems.

Real-Time Constraint
Often used in real-time systems where meeting timing
constraints is crucial. It may include real-time operating
systems (RTOS) or bare-metal programming.

Code is generally more portable across different
platforms, adhering to the C standard.

Code Portability
Code is often less portable due to hardware-specific
dependencies and optimizations. Porting code between
different embedded platforms can be challenging.

VS

 Target Hardware Architecture:
 Processor and Specifications:
 Program Memory and Data Memory Size:
 Peripherals and Components

 Memory Mapping
 Software Development

 GCC Compiler: Compiler: riscv32-unknown-elf-gcc or riscv64-unknown-elf-gcc.
 Debugger: GDB with RISC-V support.
 ELF Loader: OpenOCD or RISC-V Proxy Kernel.

Stress Checking and Profiling Tools for RISC-V:
 RISC-V Performance Monitor or Perf.

Requirements: Basic and Complex

Embedded System Schematic
and Memory Mapping

SW Development Environment

0x00000142 4912
0x00000144 6808
0x00000146 F040000F
0x0000014A 6008

Start
; direction register
 LDR R1,=GPIO_PORTD_DIR_R
 LDR R0,[R1]
 ORR R0,R0,#0x0F
; make PD3-0 output
 STR R0, [R1]

Source code

Build Target (F7)

Download
Object code

Processor

Memory

I/O

Simulated
Microcontroller

Address Data

Editor KeilTM uVision®

Processor

Memory

I/O

Real
Microcontroller

Start
Debug
Session

Start
Debug
Session

Compiler Options
 riscv32-unknown-elf-gcc //

-march=rv32imac // Architecture and ISA Extensions:
-mabi=ilp32 // ABI (Application Binary Interface: Int, long, pointer):
-O2 // Optimization Levels:
-mtune=sifive-e31 // Code Genartion for specific RISCV core
-g // Debugging and Profiling -pg
 mhard-float // Floating Point Options: Hard/Soft Floting point:

 -T linker_script.ld // -T: Specify a linker script.
-I/path/to/include // Include Paths and Libraries
-L/path/to/li //
-o output.elf // Output file
source.c // source file
-lm // -lm (math library)

 -funroll-loops // Loop Unrolling option

Define Memory Address

Computer Programming and Memory Layout

 Understanding C memory layout is crucial for debugging, optimizing
performance, security and interfacing with low-level systems.

 𝐓𝐞𝐱𝐭 () :𝐂𝐨𝐝𝐞 𝐒𝐞𝐠𝐦𝐞𝐧𝐭
 𝐃𝐚𝐭𝐚 𝐒𝐞𝐠𝐦𝐞𝐧𝐭:
 𝐁𝐒𝐒 𝐒𝐞𝐠𝐦𝐞𝐧𝐭:
 𝐇𝐞𝐚𝐩 𝐒𝐞𝐠𝐦𝐞𝐧𝐭:
 𝐒𝐭𝐚𝐜𝐤 𝐒𝐞𝐠𝐦𝐞𝐧𝐭:

 𝐓𝐞𝐱𝐭 (), and BSS :𝐂𝐨𝐝𝐞 𝐃𝐚𝐭𝐚 𝐒𝐞𝐠𝐦𝐞𝐧𝐭
 The text segment contains the executable code of the program. It is read-only and holds the instructions

for the program.
 The data segment contains initialized global and static variables. In the example code, global_data is an

initialized global variable with value 10.
 The BSS (Block Started by Symbol) segment contains uninitialized global and static variables. The BSS

segment is set to zero during program startup. In the example code, global_bss variable will be added to
the bss section by linker.

 The Text, Data, and BSS segments collectively form the static part of the program that contains fixed-
sized instructions and data that persists throughout its execution. These should be kept in a non-volatile
memory to ensure successful execution of code following a power cycle.

 You can use the size utility that comes with the compiler to get the size of the executable. Below is the
output for the example code:

 text data bss dec hex filename

 1585 600 8 2193 891 main.out

Heap and Stack Segments
 𝐇𝐞𝐚𝐩 𝐒𝐞𝐠𝐦𝐞𝐧𝐭:
 The heap segment is used for dynamic memory allocation during the program's runtime. In the

example, we allocate memory for an integer using malloc(), and heap_var points to the newly
allocated memory location.

 It's important to free the allocated memory after it is no longer needed.
 Over time, repeated memory allocation without freeing memory can cause the program's memory

usage to grow unnecessarily leading to poor performance and runtime allocation failures.

 𝐒𝐭𝐚𝐜𝐤 𝐒𝐞𝐠𝐦𝐞𝐧𝐭:
 The stack segment is used for managing function calls, local variables, and function call frames.

In the example, stack_var is a local variable that will be allotted on the stack during the execution
of the main() function.

 The stack and heap memory share the dynamic memory area of the program. The stack typically
starts from the end address of the memory and grows downward, while the heap starts from the
end of the BSS segment.

Steps: Code Compilation to Execution
 riscv32-unknown-elf-gcc -march=rv32i -S -o riscv.s ./code.c
 riscv32-unknown-elf-as -march=rv32i -S -o riscv.o ./riscv.s
 riscv32-unknown-elf-as -march=rv32i -o riscv.o ./riscv.s
 riscv32-unknown-elf-ld -o riscv ./riscv.o
 riscv32-unknown-elf-objcopy -O binary --only-section=.text riscv instr.mem
 riscv32-unknown-elf-objcopy -O binary --only-section=.data riscv data.mem
 riscv32-unknown-elf-objdump -D -b binary -m riscv:rv32i instr.mem

Debugging
 # Compile with debugging information
 riscv64-unknown-elf-gcc -march=rv64gc -mabi=lp64d -g -o my_program

./for_loop.c

Start GDB and load program
 riscv64-unknown-elf-gdb my_program
 # Run program in GDB
 (gdb) target sim

 (gdb) break linenumber
 (gdb) print variable_name

Profiling
 # Compile for performance analysis with perf
 riscv32-unknown-elf-gcc -march=rv32i -o my_program ./code.c
 # Run program with QEMU and collect profiling data
 qemu-riscv32 -cpu rv32, my_program -perf my_program
 # Analyze profiling data with perf
 // Not yet configured in cluster

Stress Testing
 riscv32-unknown-elf-gcc -march=rv32i -o stress-ng stress-ng.c
 # Run stress tests with stress-ng
 qemu-riscv32 -L /path/to/riscv/rootfs ./stress-ng --cpu 4 --io 2 --vm 2 --vm-

bytes 128M --timeout 60s
 Custom Stress Checking
 riscv32-unknown-elf-gcc -march=rv32i -o stress_test ./stress_test.c
 # Run custom stress test program
 qemu-riscv32 ./stress_test

Performance Analysis
 riscv32-unknown-elf-gcc -march=rv32i -o my_program ./code.c
 qemu-riscv32 -L /path/to/riscv/rootfs valgrind --

tool=cachegrind ./my_program
 # Run program with QEMU for performance analysis
 qemu-riscv32 -d in_asm,cpu ./my_program > qemu_log.txt
 # Analyze QEMU log
 grep -E 'IN:|CPU:|Cycle:' qemu_log.txt

Testing Spike
/opt/riscv-gnu32/bin/spike --isa=RV32IMAC -d /opt/riscv/riscv32-unknown-elf/bin/pk ./heap32
until reg 0 pc 0x1000 # Stop execution when program counter of core 0 reaches 0x1000
mem 0 0x80000000 # View memory content at address 0x80000000 for core 0
freg 0 f0 # Display floating-point register f0 for core 0
run 1000 # Resume execution for 1000 instructions
reg 0 # View all registers for core 0
pc 0 # View the program counter of core 0
until pc 0 0x1000 # Stop execution when PC of core 0 reaches address 0x1000
while reg 0 sp 0x80000000 # Continue running while stack pointer (sp) of core 0 is 0x80000000
dump 0x80000000 0x80001000 # Dump memory from address 0x80000000 to 0x80001000
quit
mtime
mtimecmp 0

QEMU Debuging
 qemu-system-riscv32 -gdb tcp::1234 -S -kernel ./hello32.o
 riscv32-unknown-elf-gdb ./hello32.o #Sperate window open
 Debug Commands
 (gdb) target remote :1234 # Connect to the QEMU GDB server
(gdb) load # Load the binary into QEMU
(gdb) b main # Set a breakpoint at the main function
(gdb) c # Continue execution until the breakpoint is hit
(gdb) info reg # Display registers
(gdb) step # Step through code line by line
(gdb) next # Step over functions
(gdb) continue # Continue execution until the next breakpoint
(gdb) quit # Exit GDB

Profiling QEMU
 qemu-system-riscv32 -d exec,int -kernel ./hello32.o
 perf record -e cycles -a -- qemu-system-riscv32 -kernel

./hello32.o
 perf report

Hands-on Embedded C for RISCV

	Slide 1
	Slide 2
	Introduction to Embedded C Programming
	Introduction to Embedded C Programming (2)
	Introduction to Embedded C Programming (3)
	Slide 6
	Requirements: Basic and Complex
	Embedded System Schematic and Memory Mapping
	Slide 9
	Compiler Options
	Define Memory Address
	Computer Programming and Memory Layout
	𝐓𝐞𝐱𝐭 (𝐂𝐨𝐝𝐞), 𝐃𝐚𝐭𝐚 and BSS 𝐒𝐞𝐠𝐦𝐞𝐧𝐭:
	Heap and Stack Segments
	Slide 15
	Steps: Code Compilation to Execution
	Debugging
	Profiling
	Stress Testing
	Performance Analysis
	Testing Spike
	QEMU Debuging
	Profiling QEMU
	Hands-on Embedded C for RISCV

