Computer Programming

by: Tassadaq Hussain
Director Centre for Al and BigData
Professor Department of Electrical Engineering
Namal University Mianwali

Collaborations:
Barcelona Supercomputing Center, Spain
European Network on High Performance and Embedded Architecture and Compilation
Pakistan Supercomputing Center

* Range of Applications

Non- Soft Hard
real time - real time o real time
Computer User Internet Cruise Tele- Flight Electronic

simulation interface video control communications control engine

Introduction to C Programming

C | (LT ;3 .

" Standard C (often just called "C") is a programming
languages used to write software, but they differ in
their target environments, constraints, and some
aspects of functionality.

" Embedded C can be considered as the subset of C
language. It uses same core syntax as C.

" Embedded C programs need cross-compliers to
compile and generate HEX code

" Embedded C is designed for Computer Programming
with specific constraints, hardware interaction
requirements, and specialized development tools.

Introduction to Embedded C Programming

Target Environment

A structural and programming language used by An extension of C primarily used to develop
developers to create desktop-based applications microcontroller based applications.

Memory Constraint

Typically used on systems with more resources. Often used in environments with limited resources
(memory, processing power).

Hardware Interaction

Hardware interactions are managed by operating system Interacts directly with hardware components, such as
or libraries, unless used in system-level programming. registers, I/0 ports, and peripheral devices.

Libraries and Extensions

Uses standard libraries provided by the C standard Uses specialized libraries and extensions for embedded
library (e.g., stdio.h, stdlib.h) and other platform-specific systems (e.g., specific APIs for handling hardware
or third-party libraries. interrupts, timers, and serial communication).

Introduction to Embedded C Programming

Development Tools

Typically uses general-purpose IDEs (e.g., Visual Studio, Specific Integrated Development Environments (IDEs),
Eclipse) and compilers (e.g., GCC, Clang). compilers, and debuggers designed for embedded system
development (e.g., Keil, IAR, MPLAB).

Real-Time Constraint

It can be used in real-time applications, but it is not Often used in real-time systems where meeting timing
inherently designed for real-time constraints and may constraints is crucial. It may include real-time operating
rely on external real-time extensions or operating systems (RTOS) or bare-metal programming.
systems.

Code Portability
Code is generally more portable across different Code is often less portable due to hardware-specific
platforms, adhering to the C standard. dependencies and optimizations. Porting code between

different embedded platforms can be challenging.

* Target Hardware Architecture:
} Processor and Specifications:
} Program Memory and Data Memory Size:
b Peripherals and Components

* Memory Mapping
* Software Development

} GCC Compiler: Compiler: riscv32-unknown-elf-gcc or riscv64-unknown-elf-gcc.
3 Debugger: GDB with RISC-V support.

} ELF Loader: OpenOCD or RISC-V Proxy Kernel.
Stress Checking and Profiling Tools for RISC-V:

! RISC-V Performance Monitor or Perf.

Requirements: Basic and Complex

Criterion

Processor

Memory
Development cost
Production cost
Number of units
Power consumption
Lifetime

Reliability

Low

4- or 8-bit

< 64 KB

< $100,000

<510

< 100

> 10 mW/MIPS

Days, weeks, or months

May occasionally fail

Medium

16-hit

64 KB to 1 MB
$100,000 to $1,000,000
$10 to 51,000

100 to 10,000

1to 10 mW/MIPS

Years

Must work reliably

High

32- or 64-bit
>1MB

> 51,000,000
> $1,000

> 10,000

< 1T mW/MIPS
Decades

Must be fail-proof

MNet Pin
label pumber

DWL-H]D——\ [(12 = ..-Reference designatar /—-—DMLID]

Embedded System Schematic I
y '\L l}l}q Pﬁ;u,-”,'j.lh'- lﬂ"l: u"
and Memory Mapping —— ke ——
- v CT
. D4 10 04 A5 48 AS A
D5 1) s T (49 A6 4
‘»-_..[.]..“i_.ll. 13 A7 ..U._.-’
Off-page connector 07 13 07 A8 51 A
5 1] 14 g A% 52 Ad A
1] 16 D9 A0 53 AT0 |
5 D 18 B1d ATl 84 AN |
OxFFFFFFFF DIl 19 55 AR
Unused " ————{ I Al s 1
051000000 S PR o I TR
Flash Memory D13 N 57 AM
(16 MB) e nloe S T
0x50000000 D122y, A5 oAl
Unused D5 Bl ol EE T
(44000000 117 il AT A
PXA255
: Nt o G
Peripherals et ST
0x40000000 Junetion AlS
Unused : agg | B2 A0)
SMSC Ethernet (PU_HESETDR—H\/\/‘WHESET A G
Controller A2l
0x08000300 e Yy L
S AX-1 129 GO 1 a2 |2 Net label showing
Unused TI'FG Ti-1 131 6Pl 2 AT5 71 : connections
132 | 0
LS8 _INT GrMo 3 ,
004000000 - D 101 B BJ’TJ{DIJ No connect : PLI
SORAM Vet il Al .
(64 MB) RIS ——te B2 p1.1/RTS0 A
Ox00000000 D3 =
A H’:’ PHAISS g?
Rjﬂ 33R Na cannection + EHD’ DUTPUIMM

between fwo nefs

C ﬂm,lmriw.'! type

SW Development Environment

Editor Keil™ uVision®

Start

14

Source code

direction register

LDR R1, =GPIO_PORTD _DIR_R
LDR RO, [R1]

ORR RO, RO, #OXOF

make PD3-0 output

STR RO, [R1]

+1Build Target (F7)

Object code

0x00000142 4912
0x00000144 6808
0x00000146 FO40000F
O0X0000014A 6008

A A

Addrless Dlata

Simulated Processor 1
Start Microcontroller
Debug
Session Memory
170
111
A
Ilqal Processor
Microcontroller
Download
M
@ Start cmory
Debug
Session /O
111

Compiler Options

* riscv32-unknown-elf-gcc //

-march=rv32imac // Architecture and ISA Extensions:

-mabi=ilp32 // ABI (Application Binary Interface: Int, long, pointer):

-0O2 /I Optimization Levels:

-mtune=sifive-e31 // Code Genartion for specific RISCV core

-0 // Debugging and Profiling -pg

mhard-float // Floating Point Options: Hard/Soft Floting point:
*-T linker_script.ld Il -T. Specify a linker script.

-I/path/to/include /I Include Paths and Libraries

-L/path/to/li /l

-0 output.elf // Output file

source.c // source file

-Im /I -Im (math library)

* -funroll-loops // Loop Unrolling option

Define Memory Address

f* Timer Registers */

fdefing
fdefing
fidefine
fdefing
fdefine
fidefine
fdefine

TIMER 0 MATCH REG
TIMER 1 MATCH REG
TIMER 2 MATCH REG
TIMER 3 MATCH REG
TIMER_COUNT REG

TIMER STATUS REG

TIMER_INT ENABLE REG

{{uint32_t volatile
{{uint32 t volatile
(*({uint3z_t wolatile
(*({uint32_t volatile
(*(({uint32_t wolatile
(*({uint3z_t wolatile
(*({uint3z_t wolatile

I::t
(1-

/* Timer Interrupt Enable Register Bit Descriptions */

fdefine
fdefine
#define
Fdefine

TIMER_0_INTEN
TIMER_1_INTEN
TIMER_2_INTEN
TIMER_3_INTEN

(001}
(on02)
[ow0d)
(008)

f* Timer Status Register Bit Descriptions */

Fdefine
fdefine
fdefing
Fdefine

/* Interrupt Controller Registers */
fdefine INTERREUPT PENDING REG
fdefine INTERRUPT ENABLE REG
fidefine INTERRUPT TYPE REG

TIMER 0 MATCH
TIMER_1_MATCH
TIMER 2 MATCH
TIMER_3_MATCH

[Cw01)
(ox02)}
(w04}
{008)

{(*((uint32_t wolatile
(*(({uint3z_t volatile
{(*{{uint3z t volatile

/* Interrupt Enable Register Bit Descriptions */

fdefine
fdefine
fdefine
fdefing
fdefine
fdefine

GPI0_0_ENABLE
UART ENABLE

TIMER_O_ENABLE
TIMER 1_ENABLE
TIMER_2_ENABLE
TIMER_3_ENABLE

[Gee00000100)
{0x00400000)
{ 04000000)
[Ox0E000000)
(010000000)
(0x20000000)

* J0x40400000))
*J0x40A0D004))
*)04 000008))
* J0x4040000C))
0w 000100)
*JOxA0AD0014))
*N0x40AD00IC)

*10:40000000))
*Jox40000004))
*10x40000008))

/* General Purpose I/0 (GPIO) Registers */

#tdefine GPIO 0 _LEVEL REG
#define GPIO 1 LEVEL_REG
fidefine GPIO 2 LEVEL REG
#define GPIO 0 DIRECTION REG
#define GPIO 1 DIRECTION REG
#tdefine GPIO 2 DIRECTION REG
#define GPIO 0 _SET_REG
#tdefine GPIO 1 SET REG
#define GPIO 2 SET REG
#define GPIO 0 _CLEAR_REG
#define GPIO 1 _CLEAR REG
#idefine GPIO_2 CLEAR_REG
#define GPIO 0 FUNC LO REG
#define GPIO 0 _FUNC HI REG

(*((uint32_t
(*((uint32_t
(*((uint32_t
(*(({uint32_t
(*((uint32_t
(*(({uint32_t
(*((uint32_t
(*((uint32_t
(*((uint3z t
(*((uint3z2_t
(*((uint32 t
(*((uint32_t
(*((uint32 t
(*((uint32 t

volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile

*)0x40E00000))
*)0x40E00004))
*)0x40E00008))
*)Ox40E0000C))
*)0x40E00010))
*)0x40E00014))
*)0x40E00018))
*)0x40E0001C))
*)0x40E00020))
*)0x40E00024))
*)0x40E00028))
*)0x40E0002C))
*)0x40E00054))
*)0x40E00058))

Computer Programming and Memory Layout

Understanding C memory layout is crucial for debugging, optimizing

performance, security and interfacing with low-level systems.

Text (Code) Segment:
Data Segment:

BSS Segment:

Heap Segment:

Stack Segment:

BTk

* Text (Code), Data and BSS Segment:

* The text segment contains the executable code of the program. It is read-only and holds the instructions
for the program.

* The data segment contains initialized global and static variables. In the example code, global data is an
Initialized global variable with value 10.

* The BSS (Block Started by Symbol) segment contains uninitialized global and static variables. The BSS
segment is set to zero during program startup. In the example code, global bss variable will be added to
the bss section by linker.

* The Text, Data, and BSS segments collectively form the static part of the program that contains fixed-
sized instructions and data that persists throughout its execution. These should be kept in a non-volatile
memory to ensure successful execution of code following a power cycle.

* You can use the size utility that comes with the compiler to get the size of the executable. Below is the
output for the example code:

* text data bss dec hex filename

* 1585 600 8 2193 891 main.out

Heap and Stack Segments

Heap Segment:

The heap segment is used for dynamic memory allocation during the program's runtime. In the
example, we allocate memory for an integer using malloc(), and heap_var points to the newly
allocated memory location.

It's important to free the allocated memory after it is no longer needed.

Over time, repeated memory allocation without freeing memory can cause the program's memory
usage to grow unnecessarily leading to poor performance and runtime allocation failures.

Stack Segment:

The stack segment is used for managing function calls, local variables, and function call frames.
In the example, stack var is a local variable that will be allotted on the stack during the execution
of the main() function.

The stack and heap memory share the dynamic memory area of the program. The stack typically
starts from the end address of the memory and grows downward, while the heap starts from the
end of the BSS segment.

HIGHER ADDRESS HIGHER ADDRESS #includecstdic. b

#ing lude<malloc. hx
- {ommandline srgament

UNMAPPED - void FUNCTION 1();

& environment variables veid FUNCTION_2();

S Stack frames of

'STACE- main() char 51[]-"FIRMCODES") //initiclized read-write area of DATA segmen

different functions int 1; Juninitialized DATA segment
_ !".!Iﬂl."k I'I'F.iﬂ'ﬂﬂ F“m" "] o Fm:llll:llllg its local const int x=1; Finitiolized resd-only area of DATA
a variables int main()
{
F“mn“ ﬂ[l i-t!ti't i“.t TEMF':E-', Suntritial t2ed DAT -

mimttiglized MATA segment

char *p={char*)malloc{sizeof(char)}; ./ Hegp segment

Dvnamic Memary malloc allocation FUNCTION 1(}; JFUNCTION 1 stack frome
L
p

return 2)
¥
un-initialized DATA void FUNCTION 1()

segment {
Data Segment

Initialized DATA FUNCTION 2{}3 //FUNCTION 2 stock frome
segment }

void FUNCTION 2()
{

H

Execulable Code

LOWER ADDRESS LOWER ADDRESS

imt a; dimicialired in stock fross of FLINC

imt bj Jimitiolized in stock frome of FUNCTION 2

Steps: Code Compilation to Execution

riscv32-un
rscv32-un
rscv32-un
rscv32-un
rscv32-un
rscv32-un

riscv32-un

KNOWn-e
KNOWnN-e
KNOWn-e
KNOWnN-e
KNOWnN-e

KNOWnN-e

KNOWn-e

f-gcc -march=rv32i -S -o riscv.s ./code.c
f-as -march=rv32i -S -0 riscv.o ./riscv.s
f-as -march=rv32i -0 riscv.o ./riscv.s

f-Id -o riscv ./riscv.o

f-objcopy -O binary --only-section=.text riscv instr.mem

f-objcopy -O binary --only-section=.data riscv data.mem

f-objdump -D -b binary -m riscv:rv32i instr.mem

Debugging

* # Compile with debugging information

* riscv64-unknown-elf-gcc -march=rv64gc -mabi=Ip64d -g -0 my_program
Jfor_loop.c

Start GDB and load program
* riscve4-unknown-elf-gdb my program
* # Run program in GDB
* (gdb) target sim
} (gdb) break linenumber
b (gdb) print variable_name

Profiling
Compile for performance analysis with perf
riscv32-unknown-elf-gcc -march=rv32i -o my_program ./code.c
Run program with QEMU and collect profiling data
gemu-riscv32 -cpu rv32, my_program -perf my_ program
Analyze profiling data with perf

// Not yet configured in cluster

Stress Testing

riscv32-unknown-elf-gcc -march=rv32i -0 stress-ng stress-ng.c
Run stress tests with stress-ng

gemu-riscv32 -L /path/to/riscv/rootfs ./stress-ng --cpu 4 --i0 2 --vm 2 --vm-
bytes 128M --timeout 60s

Custom Stress Checking
riscv32-unknown-elf-gcc -march=rv32i -0 stress _test ./stress_test.c
Run custom stress test program

gemu-riscv32 ./stress_test

Performance Analysis

* riscv32-unknown-elf-gcc -march=rv32i -0 my_program ./code.c

* gemu-riscv32 -L /path/to/riscv/rootfs valgrind --
tool=cachegrind ./my_program

* # Run program with QEMU for performance analysis

* gemu-riscv32 -d in_asm,cpu ./my_program > demu_log.txt
* # Analyze QEMU log

* grep -E 'IN:|CPU:|Cycle:' gemu_log.txt

Testing Spike

lopt/riscv-gnu32/bin/spike --isa=RV32IMAC -d /opt/riscv/riscv32-unknown-elf/bin/pk ./heap32
until reg 0 pc 0x1000 # Stop execution when program counter of core 0 reaches 0x1000
mem 0 0x80000000 # View memory content at address 0x80000000 for core 0

freg O fO # Display floating-point register fO for core O

run 1000 # Resume execution for 1000 instructions

reg O # View all registers for core O

pc O # View the program counter of core O

until pc 0 0x1000 # Stop execution when PC of core 0 reaches address 0x1000

while reg 0 sp 0x80000000 # Continue running while stack pointer (sp) of core 0 is 0x80000000
dump 0x80000000 0x80001000 # Dump memory from address 0x80000000 to 0x80001000
quit

mtime

mtimecmp O

QEMU Debuging

* gemu-system-riscv32 -gdb tcp::1234 -S -kernel ./hello32.0

* riscv32-unknown-elf-gdb ./hello32.0 #Sperate window open

* Debug Commands

* (gdb) target remote :1234 # Connect to the QEMU GDB server

(gdb) load # Load the binary into QEMU

(gdb) b main # Set a breakpoint at the main function

(gdb) c # Continue execution until the breakpoint is hit
(gdb) info reg # Display registers

(gdb) step # Step through code line by line

(gdb) next # Step over functions

(gdb) continue # Continue execution until the next breakpoint

(gdb) quit # Exit GDB

Profiling QEMU

* gemu-system-riscv32 -d exec,int -kernel ./hello32.0

* perf record -e cycles -a -- gemu-system-riscv32 -kernel
/hello32.0

* perf report

Hands-on Embedded C for RISCV

	Slide 1
	Slide 2
	Introduction to Embedded C Programming
	Introduction to Embedded C Programming (2)
	Introduction to Embedded C Programming (3)
	Slide 6
	Requirements: Basic and Complex
	Embedded System Schematic and Memory Mapping
	Slide 9
	Compiler Options
	Define Memory Address
	Computer Programming and Memory Layout
	𝐓𝐞𝐱𝐭 (𝐂𝐨𝐝𝐞), 𝐃𝐚𝐭𝐚 and BSS 𝐒𝐞𝐠𝐦𝐞𝐧𝐭:
	Heap and Stack Segments
	Slide 15
	Steps: Code Compilation to Execution
	Debugging
	Profiling
	Stress Testing
	Performance Analysis
	Testing Spike
	QEMU Debuging
	Profiling QEMU
	Hands-on Embedded C for RISCV

