
Computer Architecture
by: Tassadaq Hussain

Director Centre for AI and BigData
Professor Department of Electrical Engineering

Namal University Mianwali

Collaborations:
Barcelona Supercomputing Center, Spain

European Network on High Performance and Embedded Architecture and Compilation
Pakistan Supercomputing Center

Computer Architecture
 Design, organization, and functionality of a computer

system, focusing on how its components interact to
perform tasks efficiently. It encompasses the hardware,
software, and interfaces that define a computer's
capabilities and performance.

Key Aspects of Computer Architecture
(Including Basic Hardware Components)

 Instruction Set Architecture (ISA)
 Microarchitecture
 Memory Systems
 Buses
 Input/Output (I/O) Systems
 Control Mechanisms
 Performance Optimization
 Interconnects

05

02 03 04

06 07 08

Domestic
Appliances

Audio/Video
Equipment

Gamming

Telecommunication Medical Devices Cars And Vehicles Sensor Integration

Manufacturing
Equipment

01

Applications of Computer Systems

Types of Computer Architecture

 Real Time
 Stand alone
 Networked
 Mobile

Based on Performance
of Microcontroller

 Small Scale
 Large Scale
 Sophisticated

 Hard-Real Time
 Soft Real Time

 Control Systems
 Monitoring Systems
 Data Acquisition
 Systems

Based on Application Based on Complexity Based on Functional
Requirements

1 2 3 4

Basic Computer Architecture

Hardware

Software

Peripherals Microprocessor

Embedded OS Application

Input Output

Computer

Contents

Overview of Embedded Systems and their Application
Introduction to Micro-controller and Microprocessors
Embedded System Architectures
Memory Mapping and Bus Architecture
System Clock Tree
Programming

Microprocessors and Microcontrollers

Microprocessor:
A central processing unit (CPU) on a single integrated circuit
(IC) designed to perform general-purpose computation.

Key Characteristics: High processing power, requires external
components for I/O, memory, and storage.

Examples: Intel Core, AMD Ryzen

Microcontrollers:

An integrated circuit designed to perform specific control
functions, containing a CPU, memory, and I/O peripherals on a
single chip.

Key Characteristics: Compact, low power, designed for specific
tasks.

Examples: Arduino (ATmega328), PIC (Microchip
PIC16F877A)

 Key Differences
• Architecture:

• Microprocessors: CPU only, needs external components.
• Microcontrollers: CPU, memory, I/O peripherals

integrated.
• Usage:

• Microprocessors: General-purpose computing, PCs,
servers.

• Microcontrollers: Embedded systems, appliances,
automotive.

• Power Consumption:
• Microprocessors: Higher power consumption.
• Microcontrollers: Lower power consumption.

• Complexity and Cost:
• Microprocessors: More complex, higher cost.
• Microcontrollers: Simpler, cost-effective for specific

tasks.

Major Units in Computer Architecture
 Memory Management Unit (MMU)
 Purpose: Translates virtual addresses to physical addresses, handles memory protection, and manages virtual
memory.
 Integration: Essential for supporting sophisticated memory management required by modern operating systems.
 Bus System
 Purpose: Facilitates communication between the CPU, memory, and peripherals.
 Components:
 Address Bus: Carries memory addresses.
 Data Bus: Transfers data.
 Control Bus: Sends control signals.
 Integration: Crucial for ensuring all parts of the computer system can communicate effectively.
 Input/Output (I/O) System
 Purpose: Manages data flow between the CPU and external devices.
 Components:
 I/O Controllers: Interfaces that manage the interaction between the system and peripheral devices.
 I/O Ports: Connection points for external devices.
 Integration: Often considered part of the bus system, as it involves communication pathways.
 System Software and Firmware
 BIOS/UEFI: Initializes hardware and provides a runtime environment for the operating system.
 Operating System: Manages hardware resources and provides services for application software.
 Firmware: Low-level software embedded in hardware to control device-specific functions.

MICROPROCESSOR

ALU

Control unit

Register Array

Serial Communication

I2C SPI

UART

Ext. Oscillator
RC Oscillator

PLL

ADC Channels

DMA Controller

CPU

Timers

Timer 1
Timer 2

WDT

Interrupts

GPIO Ports

Port A Port B Port C

Memory

Program
Memory

RAM

EEPROM

Microprocessors and Microcontrollers

Applications of Microprocessors

• Personal Computers

• Servers and Workstations

• Gaming Consoles

• Smartphones and Tablets

• High-performance computing systems

Applications of Microcontrollers
 Home Appliances (Microwaves, Washing Machines)
 Automotive Systems (Engine Control Units, Airbags)
 Consumer Electronics (Remote Controls, Toys)
 Industrial Automation (Robotic Controls, Sensors)
 IoT Devices (Smart Home Devices, Wearables)

Architecture Comparison

Key Components: ALU, Control Unit, Registers, Memory
(RAM/ROM), I/O Ports, Timers

Development Tools

• Microprocessors: Compilers, Debuggers, IDEs (e.g., GCC, Visual
Studio)

• Microcontrollers: Integrated Development Environments (IDEs),
Simulators, Debuggers (e.g., MPLAB, Keil uVision, Arduino IDE)

Trends and Future Directions

Increasing Integration and Miniaturization AI and Machine Learning
Integration IoT and Edge Computing Low Power and Energy-Efficient
Designs

Contents

Overview of Embedded Systems and their Application
Introduction to Micro-controller and Microprocessors
System on Chip Architectures
Memory Mapping and Bus Architecture
System Clock Tree
Embedded processor Instruction Set Architecture

HPC SoC Systems

Computer Arch: SoC Key Components

 Processor
 ISA
 Internal Bus
 Memory Unit
 Power
 Scheduling
 Input / Output
 DMA

Processor
 RISC (Reduced Instruction Set Computing):
 Common ISAs include ARM and RISC-V.
 Simplified instructions for efficient execution and

low power consumption.

Internal Bus: System on Chip (SoC)
 Integrated Components:
 Combines CPU, memory, I/O ports, and other peripherals on a

single chip.
 Reduces physical space and power consumption.
 Peripheral Integration:
 Includes components such as ADCs, DACs, timers, PWM

controllers, and communication interfaces (UART, SPI, I2C, etc.).

Memory Unit
 On-Chip Memory:
 Typically includes SRAM and ROM/Flash memory.
 Fast access times for real-time performance.
 External Memory Interfaces:
 Support for connecting to external memory modules

like DRAM or NOR/NAND Flash.

 SRAM (Static RAM)
 Purpose: Temporary storage for variables and data during execution.
 Characteristics: Volatile, fast access.
 Usage: Stores variables, stack, and temporary data.

 EEPROM
 Purpose: Stores data that must persist across power cycles.
 Characteristics: Non-volatile, byte-addressable.
 Usage: Saves user settings and calibration data.

 Flash Memory (Program Memory)
 Purpose: Stores the firmware or program code.
 Characteristics: Non-volatile, reprogrammable.
 Usage: Holds the application code and bootloader.

Scheduling
 Real-Time Operating System (RTOS) Support:
 Features for deterministic execution and low-latency interrupts.
 Dedicated Timers and Counters:
 Hardware support for precise timing operations.
 Interrupt Handling:
 Fast and efficient interrupt processing capabilities.

Power Consumption
 Power Management Features:
 Multiple power modes (active, idle, sleep, deep sleep).
 Dynamic voltage and frequency scaling (DVFS).
 Efficient Instruction Execution:
Instructions optimized for minimal power use per operation.

I/O and Communication Interfaces
 Integrated Communication Peripherals:
 Support for serial communication protocols like

UART, SPI, I2C, CAN, and USB.
 GPIO (General-Purpose Input/Output) Pins:
 Configurable pins for direct hardware interfacing

and control.

External Buses Low Performance
 Increasing demand for high-speed data transfer rates
- Growing need for low latency and high throughput
- Scalability and flexibility requirements
- Advancements in technology and cost reductions
 UART (Universal Asynchronous Receiver-Transmitter)

 - Theory: UART is a serial communication protocol that uses asynchronous transmission, meaning that data is transmitted
one bit at a time, without a clock signal.

 Pros:
 Simple and easy to implement
 Low power consumption
 Widely used in serial communication applications

 Cons:
 Limited data transfer rate (typically up to 115.2 kbps)
 No built-in error detection or correction
 Not suitable for high-speed or real-time applications

SPI (Serial Peripheral Interface)
 SPI is a serial communication protocol that
uses synchronous transmission, meaning that
data is transmitted with a clock signal.

- Pros:

 - Full-duplex communication (simultaneous
read and write)

 - High data transfer rates (up to 100 Mbps or
more)

 - Simple and easy to implement

- Cons:

 - Requires four wires (MOSI, MISO, SCK, SS)

 - No built-in error detection or correction

 - Can be prone to noise and interference
issues

I2C (Inter-Integrated Circuit)
 - Theory: I2C is a serial communication protocol
that uses synchronous transmission, meaning
that data is transmitted with a clock signal.

- Pros:

 - Multi-master, multi-slave communication

 - Built-in error detection and correction
(ACK/NAK protocol)

 - Widely used in microcontroller and sensor
applications

- Cons:

 - Limited data transfer rate (up to 400 kbps in
standard mode, 3.4 Mbps in fast mode)

 - More complex than UART, requiring more pins
and logic

 - Can be prone to noise and interference issues

Direct Memory Access (DMA) in Microcontrollers

Offload CPU:
 DMA allows the CPU to delegate data transfer tasks to the DMA controller, freeing
up the CPU to perform other processing tasks.

Efficient Data Transfer:
 DMA enables high-speed data transfers directly between memory and peripherals
without CPU intervention for each data byte or word, improving overall system efficiency.

Extended Address Space:
 DMA can handle block transfers using a single address setup, efficiently moving
large amounts of data and effectively increasing the addressable data space.

Contents

Overview of Embedded Systems and their Application
Introduction to Micro-controller and Microprocessors
Embedded System Architectures
Memory Mapping and Bus Architecture
System Clock Tree
Embedded processor Instruction Set Architecture

Memory Mapping
 Memory mapping is a crucial aspect of System on Chip (SoC) architecture. It refers to the way different

components of the SoC are allocated addresses in the memory space. This mapping allows the CPU and
other components to access and interact with various parts of the system's memory and peripherals.

 Key Aspects of Memory Mapping in SoCs.
 Bus System
 Address Space Allocation
 Memory Regions
 Memory Mapping Techniques:
 Memory Map Tables
 Access Mechanisms
 Virtual Memory Mapping
 Address Decoding:

 Example of Memory Mapping in an SoC
 0x0000_0000 - 0x1FFF_FFFF: RAM (1 GB of addressable RAM)
 0x2000_0000 - 0x3FFF_FFFF: ROM or Flash memory
 0x4000_0000 - 0x5FFF_FFFF: Peripheral registers (e.g., GPIO, UART)
 0x6000_0000 - 0x7FFF_FFFF: External memory or memory-mapped I/O space

Bus System Components
 Address Bus: Carries address information from the CPU to memory and peripherals. The

address bus width determines the range of addresses that can be used in memory mapping.
 Data Bus: Transfers data between components based on the address specified on the

address bus.
 Control Bus: Carries control signals that manage the read and write operations and other

control functions.
 Functions:

 Memory Map Configuration
 Interconnects and Buses
 Address Decoding
 Memory-Mapped I/O

Example:

On-Chip Memory and Peripheral Mapping: Within the bus system, the memory map determines the layout of on-chip
memory, peripheral registers, and I/O devices. The bus system ensures that the CPU and other components access
the correct addresses based on this map.

Address Map/Space Allocation
 Memory Address Space: Defines the range of addresses

used to access different types of memory, including RAM,
ROM, and external memory.

 Peripheral Address Space: Allocates addresses for
various peripherals and I/O devices.

Memory Regions

 Boot Memory: Often used to store the bootloader or initial
firmware.

 Code Memory: Stores executable code and program instructions.
 Data Memory: Used for storing variables, stack, and heap data.
 Peripheral Registers: Memory-mapped addresses used to control

and interact with peripheral devices (e.g., timers, UARTs, GPIOs).

Memory Mapping Techniques:
 Flat Memory Model: All memory

and peripherals are mapped
into a single, linear address
space.

 Segmented Memory Model:
Memory and peripherals are
divided into segments or blocks,
each with a specific address
range.

Memory Map Tables and Access Mechanisms
 Memory Map Table: A detailed table that outlines the

starting address, size, and type of each memory region
and peripheral.

 Memory-Mapped I/O: Peripherals are accessed by
reading from or writing to specific memory addresses.

 Access Mechanism:
 Linker Script: Define how different code and data

sections are placed in memory.
 Direct Memory Access (DMA): Allows peripherals to

directly access memory without CPU intervention,
reducing latency and improving performance.

Virtual Memory Mapping
 Virtual Address Space: Some SoCs use virtual memory systems to abstract physical memory

addresses, providing flexibility in memory management.
 Virtual Address: It is an address of a program's memory space.
 Page Table: The table contains mappings from virtual addresses to physical addresses. Each entry in the

page table corresponds to a "page" of memory.
 Page Size: Memory is divided into fixed-size pages, typically ranging from 2 KB to 16 KB (though sizes like

4 KB or 8 KB are common). The virtual address is split into two parts:
 Page Number: Identifies the page within the virtual address space.
 Offset: Identifies the specific location within the page.

 Translation: When a virtual address is used, the page number is looked up in the page table to find the
corresponding physical page. The offset is then added to this physical page to get the final physical address.

 Physical Address: The final physical address points to the exact location in the system's memory (RAM)
where the data is stored.

Contents

Overview of Embedded Systems and their Application
Introduction to Micro-controller and Microprocessors
Embedded System Architectures
Memory Mapping and Bus Architecture
System Clock Tree
Embedded processor Instruction Set Architecture

System Clock Tree
 It is responsible for distributing clock signals throughout the system. It ensures

that all components receive accurate and synchronized timing signals necessary
for proper operation. Here's a detailed look at the clock tree and its role in
embedded systems:

 Purpose of the Clock Tree:
 Timing Distribution: The clock tree distributes clock signals from a central

oscillator or clock source to various components and subsystems within the
embedded system.

 Synchronization: Ensures that different parts of the system operate in sync,
which is crucial for reliable and predictable system performance.

 Components of a Clock Tree:
 Clock Source: The primary oscillator or clock generator that provides the initial clock

signal.
 Clock Distributors: Distributes the clock to various parts of the system. This may include

clock buffers, drivers, and multiplexers.
 Clock Dividers: Reduce the frequency of the clock signal to provide lower frequency

clocks for different subsystems.
 Clock Multipliers: Increase the frequency of the clock signal if higher frequencies are

required for certain components.
 Phase-Locked Loops (PLLs) and Delay-Locked Loops (DLLs): Used to generate stable,

high-frequency clock signals from a lower-frequency reference clock, or to align the phase
of clocks.

 Clock Gating: Mechanism to enable or disable the clock signal to specific parts of the
system to save power when those parts are not in use.

	Slide 1
	Computer Architecture
	Key Aspects of Computer Architecture (Including Basic Hardware
	Slide 4
	Types of Computer Architecture
	Basic Computer Architecture
	Contents
	Microprocessors and Microcontrollers
	Major Units in Computer Architecture
	Slide 10
	Microprocessors and Microcontrollers (2)
	Contents (2)
	Slide 13
	HPC SoC Systems
	Computer Arch: SoC Key Components
	Processor
	Internal Bus: System on Chip (SoC)
	Memory Unit
	Slide 19
	Scheduling
	Power Consumption
	I/O and Communication Interfaces
	External Buses Low Performance
	Slide 24
	Direct Memory Access (DMA) in Microcontrollers
	Contents (3)
	Memory Mapping
	Slide 28
	Bus System Components
	Address Map/Space Allocation
	Memory Regions
	Memory Mapping Techniques:
	Memory Map Tables and Access Mechanisms
	Virtual Memory Mapping
	Contents (4)
	System Clock Tree
	Components of a Clock Tree:

