
Programming RISC-V using assembly and C
language

by: Tassadaq Hussain
Director Centre for AI and BigData

Professor Department of Electrical Engineering
Namal University Mianwali

Collaborations:

Barcelona Supercomputing Center, Spain
European Network on High Performance and Embedded Architecture and Compilation

Pakistan Supercomputing Center

RISCV GCC Assembler

_start:
ld s3 0x001121
Ld rs2 0x0022233
add rd, rs1, rs2
St rd 0x0000001

Assembly or C/C++
 Write Efficient Code
 Secure Application
 Multi-Threaded and Complex Program to run multiple devices (OS)
 Real-Time Applications for Real world Problems

Programming RISC-V

 Problem
 Write it in your own words
 Make Pseudo Code
 Create Control and Data-flow Graph
 Program (C/C++, ASM)
 Debug
 Profile
 Optimize/Fine Tune
 Execute
 Test

Flowchar
t

Hazards
 Data Hazards: Instructions are waiting for

data from other instructions.
 Control Hazards: Changes in instruction flow

cause delays.
 Structural Hazards: Limited hardware

resources cause delays.

// example.c
int global_var = 10;
int main() {
 int local_var = 5;
 int result = global_var +
local_var;
 return result;
}

riscv32-unknown-elf-gcc example.o -o example

 The compiler generates an
object file in ELF format. This
object file contains machine
code, data, and metadata,
organized into different
sections like .text
(code), .data (initialized data),
and .bss (uninitialized data).

 Instruction Section: Contains the compiled
machine code instructions (text section).

 Data Section: Contains initialized data
(data section).

 The linker combines the code and data
sections, resolves symbols, and sets up
memory addresses.

 The linker script defines how different
sections are mapped into the memory of
the microcontroller.

 It specifies memory regions and assigns
addresses to different sections of the code
and data.

 MEMORY
 {
 ROM (rx) : ORIGIN = 0x08000000, LENGTH = 512K
 RAM (rwx) : ORIGIN = 0x20000000, LENGTH = 64K
 }

 SECTIONS
 {
 .text : {
 *(.text)
 } > ROM

 .data : {
 *(.data)
 } > RAM
 }

 Next step involves using a
programmer or debugger tool to
flash the firmware into the RISCV
System.
 Instruction Memory: The code from

the .text section is loaded into the
system instruction memory.

 Data Memory: The initialized data
from the .data section is loaded into
the system data memory.

The high addresses are the top of the figure and the low addresses

are the bottom.

The stack pointer (sp) starts at BFFF FFF0 hex and grows down

toward the Static data. The text (program code) starts at 0001 0000hex

and includes the statically-linked libraries.

The Static data starts immediately above the text region; in this

example, we assume that address is 1000 0000hex . Dynamic data,

allocated in C by malloc(), is just above the Static data. Called the

heap, it grows upward toward the stack. It includes the dynamically-

linked libraries.

Linker Script: Program and Data Memory Allocation

Topics

Storage Classes in C
Functions in C
Memory Layout in C
Arrays
Operators in C

Decimal, Hexadecimal, Octal, and Character Values in C

• Decimal is the default number format
int m,n; //16-bit signed numbers
m = 453; n = -25;

• Hexadecimal: preface value with 0x or 0X
m = 0xF312; n = -0x12E4;

• Octal: preface value with zero (0)
m = 0453; n = -023;

Don’t use leading zeros on “decimal” values. They will be interpreted as octal.
• Character: character in single quotes, or ASCII value following “slash”

m = ‘a’; //ASCII value 0x61
n = ‘\13’; //ASCII value 13 is the “return” character

• String (array) of characters:
unsigned char k[7];
strcpy(m,“hello\n”);

 //k[0]=‘h’, k[1]=‘e’, k[2]=‘l’, k[3]=‘l’, k[4]=‘o’,
//k[5]=13 or ‘\n’ (ASCII new line character),
//k[6]=0 or ‘\0’ (null character – end of string)

Syntax => No Prefix

Syntax => Prefix 0x

Syntax => Prefix 0

Single quotes for
character literals,
or ASCII value with

a backslash

Double quotes for
Strings with null

Terminator \n

Program Variables in C Programming

Definition:
A variable is an addressable storage location used to hold information that can be referenced and manipulated by the program.

Declaration:

Purpose: To specify the size, type, and name of the variable.

Example:

int x, y, z; // Declares 3 variables of type “int” (integer)

char a, b; // Declares 2 variables of type “char” (character)

Storage Allocation:

• Registers: Fast, limited storage for frequently accessed variables.

• RAM: Dynamic memory for variables that change during program execution.

• ROM/Flash: Permanent storage, typically for constants or read-only data.

Variable Declaration in C

Basic syntax for variable declaring in C is as follows

data_type variable name = value;

Example:

The refined syntax for declaring variables in C can be quite comprehensive, incorporating storage classes, type qualifiers, type
modifiers, data types, pointers, arrays, and initial values. Adding these parameter the syntax will look like

storage-class type-qualifier type-modifier data-type *pointer variable-name[size] = initial-value;

Example:

 Storage-class, type-qualifier, type-modifier, pointer, array-size are all optional.

int z = 35; // declare and initialize variable z with value
35.

Note 1: The Data type and the
Value used to store in the Variable
must match.

Note 2: All declaration statements
must end with a semi-colon (;)

static const unsigned int *configFlagPtr = (int
*)0x40021000;

Storage Classes in C

In C programming, storage classes determine following characteristics of variables and functions.

1. Scope: Refers to variables or functions declared in another file or elsewhere in the same file.

2. Lifetime: Exists for the duration of the program.

3. Visibility: Visibility determines where a variable or function can be referenced within the program.
4. Memory location: The actual variable or function is defined elsewhere, usually in a different file.

Storage Classes control how variables are stored, accessed, and managed throughout the program. The key storage classes in C
are:

Storage Classes in C

Automatic
Storage Class

Static Storage
Class

External Storage
Class

Register Storage
Class

Thread-Local
Storage Class

Storage Classes in C: Automatic

Automatic Variable
• It is declared inside the function where it is used

• It are created when function is called and destroyed
when the function is exited

• It is local to function and also called private variables

• It is also called as local or internal variables

Auto is Default storage class for all the local variables
therefore, no need to use keyword auto

Example:
void function1 (void)
main()
{ int m =1000;

function2();
prinf(“%d\n”, m) }

Void function1(void)
{ int m =10;

printf(“%d”\n,m) }

Storage Classes in C: Automatic

Static Variable
• It persists at the function until the end of the program

• The keyword Static is used for declaration  static int x;

• Static may be internal type or external type.

• Internal means it is declared inside the function

• The scope is up to end of the function

• It is used to retain the values between functions calls

Example:
void counterFunction() {
 static int count = 0; // Static variable retains its
value between function calls
 count++;
 printf("Count: %d\n", count);
}
int main() {
 counterFunction(); // Output: Count: 1
 counterFunction(); // Output: Count: 2
 counterFunction(); // Output: Count: 3
 return 0;
}

Storage Classes in C

Scope
The scope of a variable or function refers to the region of the program where the variable or function can be accessed or used.

Types of Scope:

1. Local Scope: The region within a function or block where a variable or function is defined. Example: Variables declared
inside a function or a block are local to that function or block.

Code Example:

void func() {

 int x = 10; // x has local scope within func }

2. Global Scope: The region of the program where a variable or function is accessible throughout the entire program, typically
from its point of declaration until the end of the file.

Example: Variables and functions declared outside of all functions.

Code Example:

int globalVar = 20; // globalVar has global scope

void func() { // can use globalVar here }

Storage Classes in C

Visibility
Visibility determines where a variable or function can be referenced within the program. It specifies the extent to which a
variable or function is accessible.

Types of Visibility:

1. Internal Visibility: Refers to variables or functions that are only accessible within the file they are declared. This is typically
controlled using the static keyword.

Example:

static int internalVar = 30; // Only visible within the same file

2. External Visibility: Definition: Refers to variables or functions that are accessible across different files. This is typically
achieved using the extern keyword.

Example:

// File1.c

int externalVar = 40; // Visible to other files

// File2.c

extern int externalVar; // Reference to externalVar defined in File1.c

Storage Classes in C

Lifetime
The lifetime of a variable or function refers to the duration of time that the variable or function exists in memory and retains its value.

Types of Lifetime:

1. Automatic Lifetime: Variables with automatic lifetime are created when a function or block is entered and destroyed when it is exited. They are usually
stored on the stack.

Example:

void func()

{ int autoVar = 50; // Lifetime is limited to the duration of func }

2. Static Lifetime: Variables with static lifetime are created when the program starts and destroyed when the program ends. They retain their value between
function calls or across files.

Example:

void func() {

static int staticVar = 60; // Lifetime is the entire program duration }

3. Dynamic Lifetime: Variables with dynamic lifetime are allocated and deallocated manually using functions like malloc() and free(). Their lifetime is
controlled by the programmer.

void func() {

 int* dynamicVar = (int*)malloc(sizeof(int)); // Dynamic allocation

 free(dynamicVar); // Manual deallocation

}

Topics

Storage Classes in C
Functions in C
Memory Layout in C
Arrays
Operators in C

Functions in C

 A function in C is a set of statements that when called perform some specific task.
 It is the basic building block of a C program that provides modularity and code reusability.
 The programming statements of a function are enclosed within { } braces, having certain meanings and performing certain

operations.
 They are also called subroutines or procedures in other languages.

Syntax of Functions in C

The syntax of function can be divided into 3 aspects:
 Function Declaration

return_type name_of_the_function (parameter_1, parameter_2);
Example:

int sum(int a, int b); // Function declaration with parameter names
int sum(int , int); // Function declaration without parameter names

Functions in C

 Function Definition

The function definition consists of actual statements which are executed
when the function is called (i.e. when the program control comes to the
function).

return_type function_name (parameter_1, parameter_2)
{

// body of the function
}

 Function Calls

A function call is a statement that instructs the compiler to execute the
function. We use the function name and parameters in the function call.

In the example,

• The first sum function is called and 10,30 are passed to the sum
function.

• After the function call sum of a and b is returned and control is also
returned back to the main function of the program.

Topics

 Introduction to Embedded C Programming
Storage Classes in C
Functions in C
Memory Layout in C
Arrays
Operators in C

Memory Layout in C

A typical memory representation of a C
program consists of the following
sections.

• Text/Code segment (i.e.
instructions)

• Initialized data segment
• Uninitialized data segment (bss)
• Heap
• Stack

Memory Layout in C

Text/Code Segment
• A text segment, also known as a code segment or simply as text, is one of the sections of a program in an object file or in memory,

which contains executable instructions.

• As a memory region, a text segment may be placed below the heap or stack in order to prevent heaps and stack overflows from
overwriting it.

• Usually, the text segment is sharable so that only a single copy needs to be in memory for frequently executed programs, such as text
editors, the C compiler, the shells, and so on.

• The text segment is often read-only, to prevent a program from accidentally modifying its instructions.

 Example:
 int global_var = 5
// A function (text segment)
void print_message()
{
printf("Hello, World!\n");
}
int main()
{
print_message(); // Calls the function in the text segment return 0;
}

Segment
Text Segment void print_message()

{...}
Initialized Data Segment - int global_var = 5
Uninitialized Data
Segment

-

Stack/Heap -

Memory Layout in C Code

Initialized Data Segment
A data segment is a portion of the virtual address space of a program, which contains the global variables and static variables
that are initialized by the programmer.

int global_var = 10; // Global variable initialized with 10
static int static_var = 20; // Static variable initialized with 20

Note that, the data segment is not read-only, since the values of the variables can be altered at run time.

Lifetime: Variables in the data segment exist for the lifetime of the program. They are initialized at program startup and
persist until the program terminates.

In C, variables and constants are stored in different parts of the data segment depending on their initialization and
attributes.

Data Segment Read-Only
Segment

Read/Write
Segment

Type Example Memory Segment
Global Variable: int debug = 1; initialized read-write

area
Global Constants: const char* string = "hello world"; initialized read-only

area
Global Static Variables static int globalStatic = 20; initialized read-write

area
Static Variables in
Function

void myFunction() {
 static int i = 10; // Static variable }

initialized read-write
area

Memory Layout in C Code

Uninitialized Data Segment (bss)
 Also called the “BSS” segment (Block Started by Symbol).
 Contains global and static variables that are either:

 Not explicitly initialized in the source code.
 Initialized to zero.

Characteristics
 Initialization: The compiler initializes all variables in the BSS segment to zero before the program starts executing.
 Memory Allocation: The BSS segment occupies space in memory but does not store actual values; instead, it reserves

space and initializes it to zero.
 Memory Layout: Comes after the initialized data segment in memory.

Examples:
static int i; // Static variables uninitialized

int j; // Global variables uninitialized

Memory Layout in C Code

Stack:
 The stack is a region of memory that stores temporary data, following a Last In, First Out (LIFO) structure.
 Traditionally, it adjoined the heap and grew in the opposite direction.

Characteristics:
 Memory Layout:

 The stack is typically located in the higher parts of memory and grows towards lower addresses.
 In modern systems with large address spaces and virtual memory, the stack and heap can be placed almost anywhere,

but they still generally grow in opposite directions.

 Stack Pointer:
 A stack pointer register keeps track of the top of the stack.
 Adjusted each time a value is pushed onto or popped from the stack.

 Stack Frame: The data associated with a function call is stored in a stack frame.

 Stack Frame at minimum includes:
 Return Address: Address to return to after the function call is complete.
 May also include local variables, function parameters, etc.

Memory Layout in C Code
The size command is used to check the sizes (in bytes) of these different memory segments.

Adding one global variable increased memory allocated by data segment (Initialized data segment) by
4 bytes, which is the actual memory size of 1 variable of type integer (sizeof(global_variable)).

Simple Program Adding one global variable in program

Task: Day 3 Embedded C Programming

Prepare a brief report explaining the operation of stack memory with respect to
function calls and the phenomenon of stack overflow.

Topics

 Introduction to Embedded C Programming
Storage Classes in C
Functions in C
Memory Layout in C
Arrays
Operators in C

Arrays in C Programming

Definition:

An array is a collection of data elements stored in consecutive memory
locations. The array begins at a named address and contains a fixed number of
elements.

---------------------------One-Dimensional Arrays----------------------------------

Declaration:

Syntax: type arrayName[size];

Example Code:

int n[5]; // Declares an array of 5 integers

n[3] = 5; // Sets the value of the 4th element (index 3) to 5

Array Indexing:

Indices: Start from 0 to N-1 where N is the number of elements.

Element Access: Access elements using arrayName[index].

Memory Layout: Array Elements: n[0] | n[1] | n[2] | n[3] | n[4]

Address Value
A= (base Address) n[0]
A+2 n[1]
A+4 n[2]
A+6 n[3]
A+8 n[4]

n[0]
n[1]
n[2]
n[3]
n[4]

Memory

0x0F000000

0x0F000002

0x0F000004

0x0F000006

0x0F000008

Address

Arrays in C Programming

---------------------------Two-Dimensional Arrays----------------------------------

Declaration:

Syntax: type arrayName [rows][columns];

Example Code:

int matrix[3][4]; // Declares a 2D array with 3 rows and 4 columns
matrix[1][2] = 7; // Sets the value of the element in the 2nd row and

3rd column to 7

Array Indexing:

Indices: Start from 0,0 to N-1,N-1 where N is the number of elements.

Element Access: Access elements using arrayName[index].

Memory Layout: Array Elements (for matrix[3][4]):

matrix[0][0] | matrix[0][1] | matrix[0][2] | matrix[0][3]
matrix[1][0] | matrix[1][1] | matrix[1][2] | matrix[1][3]
matrix[2][0] | matrix[2][1] | matrix[2][2] | matrix[2][3]

Address Value
 A(base Address) n[0][0]
A+2 n[0] [1]
A+4 n[0] [2]
A+6 n[0] [3]
A+8 n[1] [0]
A+10 n[1] [1]
A+12 n[1] [2]

n[0][0]
n[0][1]
n[0][2]
n[0][3]
n[1][0]
Memory

0x0F000000

0x0F000002

0x0F000004

0x0F000006

0x0F000008

Address

Operators in C

An operator in C can be defined as the symbol that helps us to perform some specific mathematical, relational, bitwise,
conditional, or logical computations on values and variables. The values and variables used with operators are called operands.
So we can say that the operators are the symbols that perform operations on operands.

Types of Operators in C

C language provides a wide range of operators that can be classified

 into 6 types based on their functionality:

1. Arithmetic Operators

2. Relational Operators

3. Logical Operators

4. Bitwise Operators

5. Assignment Operators

6. Other Operators

Arithmetic Operators

The arithmetic operators are used to perform arithmetic/mathematical operations on operands.

 There are 9 arithmetic operators in C language:

S. No. Symbol Operator Description Syntax
1 + Plus Adds two numeric values. a + b

2 – Minus Subtracts right operand from left operand. a – b

3 * Multiply Multiply two numeric values. a * b

4 / Divide Divide two numeric values. a / b

5 % Modulus Returns the remainder after diving the left
operand with the right operand. a % b

6 + Unary Plus Used to specify the positive values. +a

7 – Unary Minus Flips the sign of the value. -a

8 ++ Increment Increases the value of the operand by 1. a++
9 — Decrement Decreases the value of the operand by 1. a–

Arithmetic Operators Example

Example Code:
int main()
{

int a = 25, b = 5;
 // using operators and printing results
 printf("a + b = %d\n", a + b);
 printf("a - b = %d\n", a - b);
 printf("a * b = %d\n", a * b);
 printf("a / b = %d\n", a / b);
 printf("a % b = %d\n", a % b);
 printf("+a = %d\n", +a);
 printf("-a = %d\n", -a);
 printf("a++ = %d\n", a++);
 printf("a-- = %d\n", a--);

 return 0;
}

Output

Relational Operators in C

Relational Operators in C

The relational operators in C are used for the comparison of the two operands. All these operators are binary operators that
return true or false values as the result of comparison.

These are a total of 6 relational operators in C:

S. No. Symbol Operator Description Syntax

1 < Less than Returns true if the left operand is less than the
right operand. Else false a < b

2 > Greater than Returns true if the left operand is greater than
the right operand. Else false a > b

3 <= Less than or
equal to

Returns true if the left operand is less than or
equal to the right operand. Else false a <= b

4 >= Greater than
or equal to

Returns true if the left operand is greater than or
equal to right operand. Else false a >= b

5 == Equal to Returns true if both the operands are equal. a == b

6 != Not equal to Returns true if both the operands are NOT equal. a != b

Relational Operators in C

Logical Operators are used to combine two or more conditions/constraints or to complement the evaluation of the original
condition in consideration. The result of the operation of a logical operator is a Boolean value either true or false.

S. No. Symbol Operator Description Syntax

1 && Logical AND Returns true if both the operands are true. a && b

2 || Logical OR Returns true if both or any of the operand is true. a || b

3 ! Logical NOT Returns true if the operand is false. !a

Example
int main()
{

int a = 25, b = 5;
// using operators and printing
results
 printf("a && b : %d\n", a && b);
 printf("a || b : %d\n", a || b);
 printf("!a: %d\n", !a);
return 0;}

Output

Relational Operators Example

int main()
{

 int a = 25, b = 5;

 // using operators and printing results
 printf("a & b: %d\n", a & b);
 printf("a | b: %d\n", a | b);
 printf("a ^ b: %d\n", a ^ b);
 printf("~a: %d\n", ~a);
 printf("a >> b: %d\n", a >> b);
 printf("a << b: %d\n", a << b);

 return 0;
}

Output

Bitwise Operators in C

The Bitwise operators are used to perform bit-level operations on the operands. The operators are first converted to bit-level and
then the calculation is performed on the operands. Mathematical operations such as addition, subtraction, multiplication, etc.
can be performed at the bit level for faster processing. There are 6 bitwise operators in C:

S. No. Symbol Operator Description Syntax

1 & Bitwise AND Performs bit-by-bit AND operation and returns
the result. a & b

2 | Bitwise OR Performs bit-by-bit OR operation and returns the
result. a | b

3 ^ Bitwise XOR Performs bit-by-bit XOR operation and returns the
result. a ^ b

4 ~ Bitwise First
Complement Flips all the set and unset bits on the number. ~a

5 << Bitwise
Leftshift

Shifts the number in binary form by one place in
the operation and returns the result. a << b

6 >> Bitwise
Rightshilft

Shifts the number in binary form by one place in
the operation and returns the result. a >> b

Bitwise Operators: AND, OR, XOR, ~

Bitwise Operators: Bit Masking

Bitwise Operators: Shift Operator

Lab Task: LED
Follower
Logic

Generate a code to Print a number in binary and decimal format, then apply
left shift operator 3 times then print number in binary and decimal

Bitwise Operators Example

int main()
{

 int a = 25, b = 5;

 // using operators and printing results
 printf("a & b: %d\n", a & b);
 printf("a | b: %d\n", a | b);
 printf("a ^ b: %d\n", a ^ b);
 printf("~a: %d\n", ~a);
 printf("a >> b: %d\n", a >> b);
 printf("a << b: %d\n", a << b);

 return 0;
}

Output

Assignment Operators in C
S. No. Symbol Operator Description Syntax

1 = Simple
Assignment Assign the value of the right operand to the left operand. a = b

2 += Plus and assign Add the right operand and left operand and assign this value to
the left operand. a += b

3 -= Minus and assign Subtract the right operand and left operand and assign this
value to the left operand. a -= b

4 *= Multiply and
assign

Multiply the right operand and left operand and assign this
value to the left operand. a *= b

5 /= Divide and assign Divide the left operand with the right operand and assign this
value to the left operand. a /= b

6 %= Modulus and
assign

Assign the remainder in the division of left operand with the
right operand to the left operand. a %= b

7 &= AND and assign Performs bitwise AND and assigns this value to the left
operand. a &= b

8 |= OR and assign Performs bitwise OR and assigns this value to the left operand. a |= b

9 ^= XOR and assign Performs bitwise XOR and assigns this value to the left operand. a ^= b

10 >>= Rightshift and
assign

Performs bitwise Rightshift and assign this value to the left
operand. a >>= b

11 <<= Leftshift and
assign

Performs bitwise Leftshift and assign this value to the left
operand. a <<= b

Assignment Operators Example

int main()
{
 int a = 25, b = 5;

 // using operators and printing results
 printf("a = b: %d\n", a = b);
 printf("a += b: %d\n", a += b);
 printf("a -= b: %d\n", a -= b);
 printf("a *= b: %d\n", a *= b);
 printf("a /= b: %d\n", a /= b);
 printf("a %%= b: %d\n", a %= b);
 printf("a &= b: %d\n", a &= b);
 printf("a |= b: %d\n", a |= b);
 printf("a >>= b: %d\n", a >>= b);
 printf("a <<= b: %d\n", a <<= b);
return 0;
}

Output

Testing and Executing the Code
RIPES
https://ripes.me/
https://github.com/mortbopet/Ripes/releases/download/v2.2.6/Ripes-v2.2.6-win-x86_64.zip

Next:
RISCV Micro Controller
RISCV Simulator and Emulators
RISCV Single Board Computer

https://ripes.me/

Microcontroller Memory Architecture

 Flash Memory
 Stores the program code (firmware) and constant data.

 SRAM (Static RAM)
 Program Memory:
 Temporary storage used during execution, holding variables, the

stack, and the heap.
 Data Memory:
 Used for dynamic data storage, including global variables, static

variables, and temporary data.
 DRAM (Dynamic RAM)

 Typically used in more complex microcontrollers or embedded
systems where larger data storage is needed.

 Stores variable data, buffers, and other dynamic data
structures.

Memory Architecture Overview:

 Harvard Architecture: Many microcontrollers use this
architecture, where program and data memories are
separate, allowing simultaneous access to both.

 Von Neumann Architecture: Some microcontrollers use
this unified memory architecture, where program and
data are stored in the same memory space, but this can
introduce bottlenecks since program and data fetches
compete for the same bus.

Pointers in Embedded C
 Pointers in C are variables that store the memory address of

another variable. In embedded C, pointers are particularly
important because they provide a way to directly access and
manipulate hardware registers, memory locations, and
peripheral devices.

 Direct Hardware Access: Pointers allow you to interact with
specific memory-mapped registers and peripherals.

 Memory Management: They are used for dynamic memory
allocation, accessing arrays, and structures efficiently.

 Function Arguments: Pointers can be passed to functions to
modify variables or return multiple values.

int a = 10;

int *ptr = &a; // ptr is a pointer that stores the address of variable 'a'

// Access the value of 'a' using the pointer

printf("Value of a: %d\n", *ptr); // Outputs 10

// Modify the value of 'a' using the pointer

*ptr = 20;

printf("New value of a: %d\n", a); // Outputs 20

int arr[5] = {1, 2, 3, 4, 5};

int *ptr = arr; // Points to the first element of the array

// Accessing array elements using the pointer

for(int i = 0; i < 5; i++) {

 printf("arr[%d] = %d\n", i, *(ptr + i));

}

void myFunction(int x) {
 printf("Value is: %d\n", x);
}

int main() {
 void (*funcPtr)(int) = myFunction; // Declare a
function pointer
 funcPtr(10); // Call the function using the pointer
 return 0;
}

#define GPIO_PORTA_BASE 0x40004000
volatile unsigned int *gpioData = (volatile unsigned
int *)(GPIO_PORTA_BASE + 0x3FC);
*gpioData = 0xFF; // Set all bits of PORTA to 1

Program Memory

 Stack and Heap: Typically located in
SRAM.

 Global/Static Variables: Located in
SRAM.

 Constant Data: Located in Flash.

Generate Instruction and Data Memory
 riscv32-unknown-elf-gcc -march=rv32i -S -o riscv.s ./code.c
 riscv32-unknown-elf-as -march=rv32i -S -o riscv.o ./riscv.s
 riscv32-unknown-elf-as -march=rv32i -o riscv.o ./riscv.s
 riscv32-unknown-elf-ld -o riscv ./riscv.o
 riscv32-unknown-elf-objcopy -O binary --only-section=.text riscv instr.mem
 riscv32-unknown-elf-objcopy -O binary --only-section=.data riscv data.mem
 riscv32-unknown-elf-objdump -D -b binary -m riscv:rv32i instr.mem

Managing Local Memory (SRAM)
#include <stdio.h>
void printArray() {
 // Local array stored in stack memory (SRAM)
 int a[10] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
 for(int i = 0; i < 10; i++) {
 printf("%d ", a[i]);
 }
 printf("\n");
}

int main() {
 printArray();
 return 0;
}

Main Memory
#include <stdio.h>
#include <stdlib.h>

int main() {
 // Allocate memory for an array of 10 integers in the heap
 int *a = (int *)malloc(10 * sizeof(int));

 // Check if memory allocation was successful
 if (a == NULL) {
 printf("Memory allocation failed\n");
 return 1;
 }

 // Initialize the array with values
 for(int i = 0; i < 10; i++) {
 a[i] = i + 1;
 }

 // Print the array values
 for(int i = 0; i < 10; i++) {
 printf("%d ", a[i]);
 }
 printf("\n");
 // Free the allocated memory
 free(a);
 return 0;
}

Debugging and Analysis Techniques

Embedded systems are specialized computer systems designed for specific purposes.
They

• Control
• Monitor
• Assist

 in the operation of equipment, machinery, or a larger system. These systems are
present in various industries, such as automotive, consumer electronics, aerospace,
and medical devices.
 Debugging is a crucial aspect of embedded systems development. As these

systems are responsible for critical operations, any error or malfunction can have
severe consequences.

 Debugging helps identify and fix errors, ensuring the system functions as expected.
 Moreover, it contributes to the overall quality, reliability, and performance of the

embedded system

Debugging and Analysis Techniques

Understanding Debugging
Debugging is the process of

• Identifying,
• Analyzing,
• Resolving issues within a software or hardware system.

It involves
• finding the root cause of problems,
• understanding their impact, and
• implementing solutions to ensure proper functioning.

Debugging and Analysis Techniques

Goals and Objectives of Debugging
• The primary goal of debugging is to ensure that a system functions as

intended. This involves identifying and fixing errors, optimizing performance,
and enhancing stability. Debugging aims to:

• Locate and resolve software bugs and hardware issues.
• Improve system performance and efficiency.
• Enhance the user experience by fixing usability issues.
• Ensure compliance with industry standards and best practices.
• Maintain system stability and reliability.

Debugging and Analysis Techniques

Importance of Debugging in Embedded Systems
Debugging plays a vital role in embedded systems development. Due to the
specialized nature of these systems, errors can lead to severe consequences,
such as equipment malfunction or even safety hazards.
• Debugging helps ensure the proper functioning of embedded systems by:
• Eliminating errors that can compromise system performance and safety.
• Optimizing resource usage, which is crucial in systems with limited resources.
• Enhancing system stability and reliability.
• Improving overall system quality and user satisfaction.
By thoroughly understanding and mastering debugging techniques, embedded
systems developers can create high-quality, reliable, and efficient systems that
meet the demands of various industries.

Debugging and Analysis Techniques

Common Debugging Challenges in Embedded Systems
Limited Resources and Processing Power
Embedded systems often operate under strict resource constraints, such as
limited memory, processing power, and power consumption.
Debugging in such environments can be challenging, as developers must
balance the need for debugging tools and techniques with the available
resources. This may require creative approaches and careful planning to ensure
effective debugging without impacting system performance.
Real-Time Constraints
Many embedded systems operate in real-time, meaning they must respond to
events and inputs within strict time constraints. Debugging real-time systems
can be challenging, as developers must not only identify and resolve issues but
also ensure that the system continues to meet its real-time requirements.
This often involves analyzing and optimizing the timing and synchronization
aspects of the system.

Debugging and Analysis Techniques

Complex Hardware and Software Interactions
Embedded systems typically involve complex interactions between hardware
and software components. Debugging these systems requires a deep
understanding of both domains, as well as the ability to analyze and trace issues
across the hardware-software boundary. This can be challenging, particularly
when dealing with proprietary or custom hardware.
Concurrency Issues
Many embedded systems rely on concurrent processing to achieve their goals,
whether through multi-threading, multi-processing, or other parallel processing
techniques.
Debugging concurrent systems introduces additional complexity, as developers
must identify and resolve issues related to synchronization, race conditions, and
other concurrency-related challenges.

Debugging and Analysis Techniques

Debugging Techniques for Embedded Systems
1. Static Code Analysis
Static code analysis involves examining the source code of a system without
executing it. It helps identify potential issues such as syntax errors, memory
leaks, and coding standard violations. The benefits of static code analysis
include early detection of errors, improved code quality, and reduced
development time.
Some popular static code analysis tools for embedded systems include:
PC-Lint: A widely used tool for analyzing C and C++ code
Cppcheck: An open-source tool for detecting bugs in C and C++ code
CodeSonar: A commercial tool for analyzing C, C++, Java, and Ada code
MISRA-C: A set of coding standards for embedded systems development in C

Debugging and Analysis Techniques

2. Dynamic Analysis
Dynamic analysis involves monitoring the behavior of a system during runtime.
It helps identify issues such as memory corruption, race conditions, and
performance bottlenecks. The benefits of dynamic analysis include real-time
error detection, improved system performance, and increased reliability.
Some popular dynamic analysis tools for embedded systems include:
Valgrind: An open-source tool for detecting memory management issues
GDB: The GNU Debugger, a widely used debugger for various programming
languages
JTAG: A hardware debugging interface used for on-chip debugging and
programming
Tracealyzer: A commercial tool for visualizing and analyzing real-time system
behavior

Debugging and Analysis Techniques

4. In-Circuit Debugging
In-circuit debugging involves connecting a debugger directly to a running
embedded system, allowing developers to monitor and control its execution.
Benefits include real-time debugging capabilities, improved system visibility,
and the ability to debug hardware-related issues.
Some popular in-circuit debugging tools for embedded systems include:
JTAG: A widely used hardware debugging interface, as mentioned in the
Dynamic Analysis section
Segger J-Link: A popular JTAG/SWD debugger for ARM-based systems
P&E Micro: A provider of in-circuit debugging solutions for various
microcontroller platforms
Atmel-ICE: An in-circuit debugger and programmer for Atmel microcontrollers

Debugging and Analysis Techniques

5. Hardware Debugging
Hardware debugging involves diagnosing and fixing issues related to the
physical components of an embedded system, such as circuitry, sensors, and
actuators. Benefits include improved system reliability, reduced development
time, and the ability to identify and resolve hardware-specific issues.
Some popular hardware debugging tools for embedded systems include:
• Oscilloscopes: Essential tools for analyzing and troubleshooting electrical

signals
• Logic Analyzers: Devices used for monitoring and analyzing digital signals
• Protocol Analyzers: Tools for capturing and analyzing communication data

between system components
• Power Analyzers: Instruments for measuring and analyzing power

consumption in embedded systems

Performance Profiling
What do we means by Performance ?
An analogy with passenger airplanes shows how subtle the question of
performance can be. For example

The capacity, range, and speed for a number of
commercial airplanes.

Performance Criterias Plane
Highest cruising speed Concorde
highest cruising speed, taking a single passenger from
one point to another in the least time.

Being 747

Which of the planes in this
table had the best
performance ?
We have possible
performance criterias’ as

Performance Profiling
Computer Performance
Similarly, we can define computer performance in several distinct ways.
Your personal performance Criteria:
If you were running a program on two different desktop computers, you’d say
that the faster one is the desktop computer that gets the job done first.
As an individual computer user, you are interested in reducing response time—
the time between the start and completion of a task—also referred to as
execution time.
Data Centre’s Criteria of performance
The faster computer was the one. that completed the most jobs during a day.
Datacenter managers often care about increasing throughput or bandwidth
—the total amount of work done in a given time.

Performance Profiling
Response time /Execution time. The total time required for the computer to
complete a task, including disk accesses, memory accesses, I/O activities,
operating system overhead, CPU execution time, and so on.
Maximizing the Performance of Computer
To maximize performance, we want to minimize response time or execution time
for some task. Thus, we can relate performance and execution time for a computer
X:

This means that for two computers X and Y, if the performance of X is greater than
the performance of Y, we have

That is, the execution time on Y is longer than that on X, if X is faster than Y.

Performance Profiling
In discussing a computer design, we often want to relate the performance of two
different computers quantitatively. We will use the phrase
“X is n times faster than Y”—or equivalently “X is n times as fast as Y”—to mean
If X is n times as fast as Y, then the execution time on Y is n times as long as it is
on X:
Relative Performance
Example If computer A runs a program in 10 seconds and computer B runs the
same program in 15 seconds, how much faster is A than B?
Answer We know that A is n times as fast as B if
Thus the performance ratio is and A is therefore 1.5 times as fast as B.

Performance Profiling

Measuring Performance
Time is the measure of computer performance: the computer that performs the
same amount of work in the least time is the fastest.

Program execution time is measured in seconds per program.
Also wall clock time, response time, or elapsed time.
These terms mean the total time to complete a task, including disk accesses,
memory accesses, input/output (I/O) activities, operating system overhead—
everything.

	Slide 1
	Slide 2
	RISCV GCC Assembler
	Assembly or C/C++
	Programming RISC-V
	Hazards
	Slide 7
	Slide 8
	Slide 9
	Linker Script: Program and Data Memory Allocation
	Topics
	Decimal, Hexadecimal, Octal, and Character Values in C
	Program Variables in C Programming
	Variable Declaration in C
	Storage Classes in C
	Storage Classes in C: Automatic
	Storage Classes in C: Automatic (2)
	Storage Classes in C (2)
	Storage Classes in C (3)
	Storage Classes in C (4)
	Topics (2)
	Functions in C
	Functions in C (2)
	Topics (3)
	Memory Layout in C
	Memory Layout in C (2)
	Memory Layout in C Code
	Memory Layout in C Code (2)
	Memory Layout in C Code (3)
	Memory Layout in C Code (4)
	Slide 31
	Topics (4)
	Arrays in C Programming
	Arrays in C Programming (2)
	Operators in C
	Arithmetic Operators
	Arithmetic Operators Example
	Relational Operators in C
	Relational Operators in C (2)
	Relational Operators Example
	Bitwise Operators in C
	Bitwise Operators: AND, OR, XOR, ~
	Bitwise Operators: Bit Masking
	Bitwise Operators: Shift Operator
	Bitwise Operators Example
	Assignment Operators in C
	Assignment Operators Example
	Testing and Executing the Code
	Microcontroller Memory Architecture
	Memory Architecture Overview:
	Pointers in Embedded C
	Slide 52
	Program Memory
	Generate Instruction and Data Memory
	Managing Local Memory (SRAM)
	Main Memory
	Debugging and Analysis Techniques
	Debugging and Analysis Techniques (2)
	Debugging and Analysis Techniques (3)
	Debugging and Analysis Techniques (4)
	Debugging and Analysis Techniques (5)
	Debugging and Analysis Techniques (6)
	Debugging and Analysis Techniques (7)
	Debugging and Analysis Techniques (8)
	Debugging and Analysis Techniques (9)
	Debugging and Analysis Techniques (10)
	Performance Profiling
	Performance Profiling (2)
	Performance Profiling (3)
	Performance Profiling (4)
	Performance Profiling (5)

