Pipeline Processor Architecture

by: Tassadaq Hussain
Director Centre for Al and BigData
Professor Department of Electrical Engineering
Namal University Mianwali

Collaborations:
Barcelona Supercomputing Center, Spain
European Network on High Performance and Embedded Architecture and Compilation
Pakistan Supercomputing Center

Topics

1. Basic Processor Architecture

2. Problems with Single Cycle Processor Architecture
3. Processor Architectures and Types

Basic Processor Architecture

Processor Architecture refers to the design and organization of a processors central processing
unit (CPU).

Components of Processor:

Arithmetic and Logic Unit: Performs mathematical calculations.

Control Unit: Control the overall processing of the processor.

Decoders Unit: Convert coded instructions into signals that can control other components.

Registers: Hold data, instructions, and addresses temporarily during processing.

Buses: Electrical pathways that transmit data and signals between components. Types include the data
bus, address bus, and control bus.

L

Machime Inspruction Foarmal

Central Processing Winit (EPLF
F—— s pgde ——i—— Operation Code —sm— Addren Or Dada
£ ' - CPU s
e — “rmgr L oL l| l M:;';’;El“l OPCODE OPERAMND = Caniral Procesting Uni —
J By Aaiiems j | Fp— QFCODE b QFERAND — Instruction Sot —
s | -1 = hi =
- =3 o Architectura e
E oL o Y uﬂ-,._hu [] E‘ f— —
T . I - s
- Addressing m

AIRRRRARRNY

4 —=

e
_E

PC

Read
address

Instruction
[31-0]

Instruction
memory

|
Instruction [6-0] |

Instruction [19-15]

/N
\ Branch

| MemRead

- me= O

I MemioReq

-|Ccmtral| ATUOs

{ MemWrite

I ALUSrc

lll\ i HEE"."‘M[E

Read

Instruction [24-20]

| register 1 Read

| Read data 1

Instruction [11-7]

register 2

Write RHead

data 2

™| register
Write

Instruction [31-0]

data Registers

T

“xc=

Zero

SaLu

result

-

Instruction [30,14-12]

'cnntmi},

g

Address

Wite
data

Read
data

Data
memory

13

Topics

2. Problems with Single Cycle Processor Architecture
3. Programming

Drawback of Single Cycle Processor

* Clock Cycle
* Fixed Clock Cycle

Multi-Cycle Implementation

FC

FLY Cor PLSauIrcs
- = i it AL LK
= ALLSreH
lgmRoad Coniral
_ ALUSICA
1 2
miR Op Raog
[Rivme (5-0] L
s Y M
u
1 X
S i D i & |
Imstnection
[6-0] s
M Instmsction | Read
u ==l Address [19-15] {register 1 o E
X -| & I{'-l
1 i 1 data 1 X
1 - ns[zhmd_znul] E ragmiadlar 5 -J,__)I il
MamData Instruction Registers LU sy ALLIOUL H
[11=7] et Read resull]
Wirite | ragisier dota 2 .«E‘[0 M -
dala Instructicn deef 1 W
register Wite P
data 2
Instruction M
[31-0] -
1 ™,
Memory]_ ' 3
data Imm ALY
mghtur Gen canirel
Imstruction [5-0)

From state 1

(Op = R-type)

Execution

ALUSrcA =1
ALUSrcB = 00

ALUOp =10

RH-type completion

RegDst =1
RegWrite
MemtoReg =0

To state 0
(Figure e4.5.8)

From state 1

(Op ="LW') or (Op = 'SW')

Memory addrass computation

ALUScA =1
ALUScB = 10
ALUDP =00

Memory
dCoass

Memory

A dACCESsS

3
MemRead MemWrite
lorD = 1 lorD = 1
+ Memory read completion step
4

RegWrite
MemtoReg =1
ReqDst=0

To state 0
(Figure e4.5.8)

Combinational
contral logic

Start

Datapath contral outputs

Memory address
eompulElion

Qutputs <
Inputs
i M _'L'-.
Inputs from instruction E!'ala F_Eglst;.ﬂ
register opcode field b b

Bamuory read
SompHE e 8585

estructicn fatch

IrsEtrotion de-cond o
magisbar Iatch

MemRAaad
i ALSreA = O

bl =

ERWWTiia
ALUSE = 01
AL =00

PO il
PCSounce = O

l:ﬂ-"F?* ‘x ﬁ:’?
<y

Branch

= sl comolalan

ALLIScs =1
ALLFSreE = 00
ALLIOS = T

By -
=
. ey Pt Ty
ﬁ acoirEn ECEEES H-iypa complatian
5 i
MemiVrite RegDst = 1
Mext state koD RegWrite

MarmloReq = O

Pipelining

Pipeline Instruction

Program

axecution _ 200 400 600 800 1000 1200 1400 1600 1800
Time T T T T T T T T T
order
(in instructions)
o 31, 100(4) '"ﬁi‘:ﬂf”" Reg| ALU a‘:;;:ﬁ Req
hw X2, 200(x4) 800 ps Insf!:f;t,lm Reg| ALU aE:;:s ey
* | Instruction
Iw %3, 400(x4) 800 ps fetch
800 ps
Program
execution ; 200 400 600 800 1000 1200 1400
Time T T T T T T | =
order
(in instructions)
w 31, 100(xd) nenuctonl |Reg| A | D2 |Reg
hw %2, 200(x4) 200 ps | " Reg| ALU | %8 |Reg
hw x3, 400(x4) 200 ps IHE;.;?;:D-H Reg| ALU aEd?el:S Reg

200ps 200ps 200ps 200ps 200 ps

Pipeline Hazards

* Data Hazards
Instruction dependencies on data not yet available.

* Control Hazards
Pipeline's uncertainty about branch outcomes leading to wrong
Instruction fetching.

* Structural Hazard
Resource conflict when multiple instructions need the same
hardware.

Data Hazard

A data hazard occurs when an instruction depends on the result of a previous instruction
that has not yet completed in the pipeline. This means the required data is not yet available
for the instruction to proceed.

Types:
Read after Write (RAW): The most common type, where an instruction needs to read a value that a previous instruction is still writing.

Write after Read (WAR): An instruction writes a value before an earlier instruction reads it, potentially causing the wrong value to be
read.

Write after Write (WAW): Two instructions write to the same register in overlapping pipeline stages, and the wrong order could
overwrite the result.

add x5, x1, x2 # Instruction 1: x5 = x1 + x2
sub x6, x5, x3 # Instruction 2: x6 = x5 - x3 (data hazard here)
mul x7, x6, x4 # Instruction 3: X7 = x6 * x4

Solution: Data hazards can be mitigated by techniques like data forwarding
(bypassing), where the result is passed directly to a dependent instruction, or by
stalling until the necessary data is available.

* Control Hazard

Definition: A control hazard, or branch hazard, arises when the pipeline makes wrong
assumptions about the outcome of a branch (conditional jump) instruction. The pipeline
may start fetching the wrong set of instructions while waiting for the branch decision.

Example: In the case of a branch instruction (e.g., an "if" statement), the processor may not know which path to take
(branch taken or not taken) until the branch instruction is fully processed.

beq x1, x2, LABEL # Instruction 1: Branch if x1 == x2
add x3, x4, x5 # Instruction 2: Continue execution if no branch
sub x6, x7, x8 # Instruction 3: Another instruction

LABEL;
mul x9, x1, x2 # Instruction 4: Executed if branch is taken

Solution: Techniques like branch prediction (guessing the outcome of a branch), delayed
branching, and speculative execution are used to minimize the impact of control hazards.

Structural Hazard

A structural hazard occurs when two or more

Instructions need to use the same hardware resource
at the same time. In other words, the hardware cannot
support all the simultaneous instructions in the
pipeline.

Example: If a CPU has a single memory unit and two instructions (e.g., aload nstr i+2
and a store) try to access memory at the same time, a structural hazard arises
because only one memory access can occur at a time. P

Instri+1

lw x5, 0(x1) # Instruction 1: Load word from memory (needs memory access)
Sw x6, 4(x1) # Instruction 2: Store word to memory (also needs memory
access)

Solution: Resource duplication (e.g., having separate
Instruction and data caches) or delaying one of the
Instructions (stalling) can resolve structural hazards.

Structura

Co2

Mam [|

coa

-
ST
=

Flesy

i E \
MEM

Bl
il

'\‘
=
— |
L

I_ Hazard

« Example
1 mem port
mem conflict

‘data access

V5

_~instr fetch

Wirite back

WE

MEM: Memory accass

EX: Execute)
address calculation

ID: Instruction decode!
register file read

Insiruction
Instruction
P T Oy

IF: Instruction fatch
Add
Ackdross

L
-

Fetch Decode Execute Memory Writeback
read P[PC] to IR é IR valid >
control genefate signals
compute rd,ffs1,rs2,offset,imm
read R R1, R2 valid .
Lt
Asrc sel mx1 mx2
Branch
ALUop Aout valid
- =
update PC from | Mread/Mwrite
mx1 Mout valid
* *
MtoR

Rwrite

1. Instruction Decoder:

Decodes the fetched instruction from
memory into signals that specify the
operation to be performed.

Breaks down machine code into control
signals that tell various parts of the
processor what to do next.

2. Sequencing Logic:

Controls the order in which operations
are carried out by determining the next
Instruction to be executed (through the
Program Counter).

Manages the fetching, decoding, and
execution cycle of instructions.
Synchronizes the processor's operation,
often tied to the system clock.

©@000eOeee

Instruction

——~—P funct?
Tb
+’. rs2
Instruction 5b
. e |
. _p| Instruction %
32b Decoder |, o s
b
+’. rd
5b
——— opcode
Th
clock cycle -
1 2 4 5
instruction
1 IF D EX MEM | WE
2 IF 0 Ex | MEM
3 IF [n] EX

* 3. Control Logic Circuit:

* Contains the logic gates and
combinational circuits that generate
control signals based on the instruction
decoded.

These control signals manage the
iInternal data flow, timing, and operation of
functional units (ALU, registers, etc.).

* 4. Control Signal Generator: + ALU Control: ALUOp, ALUSFC

+ Register Control: RegWrite , RegRead

* Generates the necessary control signals
that dictate the actions of other parts of
the CPU (ALU, memory interface, etc.).
These signals direct data movement, ALU RTINS S —
Operation1 regiSter WriteS, and memOry « Pipeline Control: stall, Flush, ForwardA, ForwardB
aCCEeSSES. + CSR Control: CSRRead , CSRWrite

« Memory Control: MemRead , MemWrite , MemToReg
« Branch/Jump Control: Branch, Jump, PCSrc

« |Immediate Generation Control: ImmSrc

* 5. Control Instruction (PC):
Manages the Program Counter, which holds the
address of the next instruction to be executed.
Handles instruction sequencing, updating the PC after

each instruction or adjusting it for branch and jump i
operations. e

* 6. Status Flag Register: EL'*H |
Contains flags that hold status information about the f___;. oo | oy
result of previous operations (e.g., Zero, Carry, __ FetchsDacods+Execite M’mmﬁﬁ“ {\-:_b e
Overflow, Sign flags). (el BER g
These flags help the Control Unit make decisions \'-—ﬂ-.,,ﬂ____ By s o | s o
regarding branching and conditional operations. e o

* 7. Timing and Clock Control: T -
Coordinates the timing of operations across the CPU] o
with the help of clock signals.
Ensures that all parts of the processor operate in Sync e«
and that each step of the instruction cycle is executed < ><lu >l >lci>lci>
at the correct time. totchod instr < oo > > > > >

writebackistore done € 00 D K D | D M D a1 D>

* 8. Branch and Jump Control:

* Manages control transfer instructions, such as

inst :25-011 rxi:';h y

26 FIETN
-

[31-28]

branches, jumps, and calls.

Works with the Branch Prediction Unit (in modern
processors) to optimize branching and minimize
delays caused by pipeline stalls.

* 9. Interrupt Control:
Handles interrupts by suspending the current
execution and transferring control to the appropriate

Jump

o

&)

3 :

sdd

=
I

branch

MemtoReg 0O

* | aqual

Enak

H=uF.ead

[31-2%]

Contral

HemMcite 0O

hluep

RLUSTC

RegWrite 0O

interrupt service routine.
Prioritizes interrupts and manages interrupt requests.

| cead
4 address

|31-0]

* 10. Microprogram Control Storage (in
microprogrammed Cus):

clk

Hamory

{ocache)

taskractlon

Ingbruct 1on

inat[25=21]

_ﬂguﬁjt

-2

imet|[20-16]

1]
inst|15-11]

In microprogrammed control units, the control signals
are generated by executing a sequence of
microinstructions stored in a microprogram memory
(control memory).

Each instruction in the CPU is mapped to a set of
microinstructions that control specific low-level
operations.

l}

wnak[15-0]

Fead 1
dnkn

cand 2
data

address
caad
data
Data
Hemotry

{cach=)
wiita

dats

l'',f

|L'.—.l

wnak [10-0]

Pipeline Version of Data-path

IFD

ILVEX

PC

Address

Instruction
mEmory

|

Ina et son

L |

Rgad

% Famd
regisier 1
a data 1
Read
regiaier 2

Registers ..
Wirite data 2
regisier
Write
dala
Imm

Gan

EXMEM
- —a-
L | Aidress
Data
memory
" Wiite
o | data

Hesd
daia

MEMMWE

Pipeline Version of Control Path

IFND IDVEX EXMEM MEKMAYE

Adds, =

[~

II T’

&

i
[

=) Ben
ragistar 1 Eﬂ =

BN N

:
:

Raad

I

- , regisier 2 ALLISy d 5 e
memory VWiite R“ﬂ"“ﬂ'ﬁ d ek F4 Suidiness ol g —

e S data 2 Data

Wiiribe memary

‘ dpla
| Weede
dal

j InSirisciaon = [
j131-0] e [

{ —

ey
=
2
>
e

=
o
E

X

| L
L 2] = Gon £
| InsiruscEon U [|1

;[3:' 141 2! - .: |_
L J 1 - L [

Lu:u*u-:r.-:m
[11-T]

Fy
= -
i ",

AT
.l 5
|'
o A T |
1
\ 3
b, #
10 =
5
E.—-—- Rﬂiﬂd
= Faad
5 register 1 Head, —
'E Faad
_I ru-um:arn :
verite Raad (-
regrsier data 2
—]
dala
Inshiuction
[31=0] I
=, Gen
Insbruction
[30, 14-12]
Insbuctian

“eE

¥

Myl

11-7]

Addrasa
s
mEmarny

Wi
datla

Read
datm

= Ena |

i
[
|
Eem—
h
L

Ml i priindd g

=11

Topics

3. Processor Architectures and Types

* Processor Architecture
* Types of Processors

Procesor Architectures

* Pipeline Architecture

* Superscalar Architecture

* Out-of-Order Execution (OoOE)

* In-Order Execution

* VLIW (Very Long Instruction Word) Architecture

* SIMD (Single Instruction, Multiple Data) Architecture

* MIMD (Multiple Instruction, Multiple Data) Architecture

* Pipeline Architecture

* In pipelining, each instruction goes through several
stages (fetch, decode, execute, etc.).

* Each stage processes a different instruction
simultaneously, similar to an assembly line.

* Superscalar Architecture

* Like pipelining, but instead of processing just one instruction per stage,

superscalar processors can handle multiple instructions in the same stage,

using multiple pipelines.

* It increases performance by allowing the processor to handle more instructions

in parallel.

pic
decole

RN

ins
cache

'TIT!

floating pLiZ
IE;"S_':I'_-'1I,!|: H
file
™ fleating pi i _ L
= Inssclon fumctional units
tudters 1]
- -
ingr. ™ decode,
bafTer : SURER ::
- &diapatch 3 o functional unit
i integer/address f— ok It L
insselion and
i budfers data cache
integer ',q
register g
file =

I

H

re-oqder and commit

MmOy
interface

'T
)

* Qut-of-Order (0O00) and In-Order Execution

* Instructions don’t need to be executed in the same order they appear in the

program. The processor executes instructions when their inputs are ready,
optimizing the use of execution units. It avoids idle time by allowing other

instructions to proceed when one is stalled (e.qg., waiting for data).
* In-Order Executes the Instructions strictly in the order they are fetched.

Simplicity and lower power consumption.

Scheduler
=1 =
3 gl sl fE]
_flush ALU| - |ALU}[ALU
PC Forwarding Logic
Fetch T
Engine

Heorder Buffer (ROB)

Reqg.
File

| Newlnstr, |- ‘

Mewin siry

* VLIW, SIMD, MIMD

* VLIW: Multiple operations are packed into a single "long instruction”
that the processor executes in parallel. Increases parallelism, but it’s
the compiler's job to group instructions efficiently.

* SIMD: One instruction operates on multiple data points at the same
time, useful in tasks like multimedia processing (e.g., working on

many pixels simultaneously). High efficiency for tasks with lots of
repetitive operations.

* MIMD: Different processors or cores execute different instructions on
different data simultaneously, often in multi-core processors. True
parallelism for different tasks or programs running at the same time.

Processor Types

ARM (Advanced RISC Machine)

* MIPS (Microprocessor without Interlocked Pipeline Stages)
* X86 (Intel and AMD)

* SPARC (Scalable Processor Architecture)

* PowerPC (Power Performance Computing)

* DSP (Digital Signal Processors)

* VLIW (Very Long Instruction Word) Architectures

* GPU (Graphics Processing Unit) Architectures

	Slide 1
	Topics
	Basic Processor Architecture
	Slide 4
	Topics (2)
	Drawback of Single Cycle Processor
	Multi-Cycle Implementation
	Slide 8
	Slide 9
	Pipelining
	Pipeline Instruction
	Pipeline Hazards
	Data Hazard
	Control Hazard
	Structural Hazard
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Pipeline Version of Data-path
	Pipeline Version of Control Path
	Slide 24
	Topics (3)
	Contents
	Procesor Architectures
	Pipeline Architecture
	Superscalar Architecture
	Out-of-Order (OoO) and In-Order Execution
	VLIW, SIMD, MIMD
	Processor Types

