
Pipeline Processor Architecture
by: Tassadaq Hussain

Director Centre for AI and BigData
Professor Department of Electrical Engineering

Namal University Mianwali

Collaborations:
Barcelona Supercomputing Center, Spain

European Network on High Performance and Embedded Architecture and Compilation
Pakistan Supercomputing Center

Topics
1. Basic Processor Architecture
2. Problems with Single Cycle Processor Architecture
3. Processor Architectures and Types

Basic Processor Architecture
Processor Architecture refers to the design and organization of a processor’s central processing
unit (CPU).
Components of Processor:

• Arithmetic and Logic Unit: Performs mathematical calculations.

• Control Unit: Control the overall processing of the processor.

• Decoders Unit: Convert coded instructions into signals that can control other components.

• Registers: Hold data, instructions, and addresses temporarily during processing.

• Buses: Electrical pathways that transmit data and signals between components. Types include the data
bus, address bus, and control bus.

Topics
1. Basic Processor Architecture
2. Problems with Single Cycle Processor Architecture
3. Programming

Drawback of Single Cycle Processor
 Clock Cycle
 Fixed Clock Cycle


Multi-Cycle Implementation

Pipelining

Pipeline Instruction

Pipeline Hazards
 Data Hazards

Instruction dependencies on data not yet available.
 Control Hazards

Pipeline's uncertainty about branch outcomes leading to wrong
instruction fetching.

 Structural Hazard
Resource conflict when multiple instructions need the same
hardware.

Data Hazard
 A data hazard occurs when an instruction depends on the result of a previous instruction

that has not yet completed in the pipeline. This means the required data is not yet available
for the instruction to proceed.

 Types:
 Read after Write (RAW): The most common type, where an instruction needs to read a value that a previous instruction is still writing.
 Write after Read (WAR): An instruction writes a value before an earlier instruction reads it, potentially causing the wrong value to be

read.
 Write after Write (WAW): Two instructions write to the same register in overlapping pipeline stages, and the wrong order could

overwrite the result.
 add x5, x1, x2 # Instruction 1: x5 = x1 + x2

 sub x6, x5, x3 # Instruction 2: x6 = x5 - x3 (data hazard here)
 mul x7, x6, x4 # Instruction 3: x7 = x6 * x4

 Solution: Data hazards can be mitigated by techniques like data forwarding
(bypassing), where the result is passed directly to a dependent instruction, or by
stalling until the necessary data is available.

 Control Hazard
 Definition: A control hazard, or branch hazard, arises when the pipeline makes wrong

assumptions about the outcome of a branch (conditional jump) instruction. The pipeline
may start fetching the wrong set of instructions while waiting for the branch decision.

 Example: In the case of a branch instruction (e.g., an "if" statement), the processor may not know which path to take
(branch taken or not taken) until the branch instruction is fully processed.

 beq x1, x2, LABEL # Instruction 1: Branch if x1 == x2
 add x3, x4, x5 # Instruction 2: Continue execution if no branch
 sub x6, x7, x8 # Instruction 3: Another instruction
LABEL:
 mul x9, x1, x2 # Instruction 4: Executed if branch is taken

 Solution: Techniques like branch prediction (guessing the outcome of a branch), delayed
branching, and speculative execution are used to minimize the impact of control hazards.

Structural Hazard
 A structural hazard occurs when two or more

instructions need to use the same hardware resource
at the same time. In other words, the hardware cannot
support all the simultaneous instructions in the
pipeline.

 Example: If a CPU has a single memory unit and two instructions (e.g., a load
and a store) try to access memory at the same time, a structural hazard arises
because only one memory access can occur at a time.

 lw x5, 0(x1) # Instruction 1: Load word from memory (needs memory access)
sw x6, 4(x1) # Instruction 2: Store word to memory (also needs memory
access)

 Solution: Resource duplication (e.g., having separate
instruction and data caches) or delaying one of the
instructions (stalling) can resolve structural hazards.

 1. Instruction Decoder:
 Decodes the fetched instruction from

memory into signals that specify the
operation to be performed.
Breaks down machine code into control
signals that tell various parts of the
processor what to do next.

 2. Sequencing Logic:
 Controls the order in which operations

are carried out by determining the next
instruction to be executed (through the
Program Counter).
Manages the fetching, decoding, and
execution cycle of instructions.
Synchronizes the processor's operation,
often tied to the system clock.

 3. Control Logic Circuit:
 Contains the logic gates and

combinational circuits that generate
control signals based on the instruction
decoded.
These control signals manage the
internal data flow, timing, and operation of
functional units (ALU, registers, etc.).

 4. Control Signal Generator:
 Generates the necessary control signals

that dictate the actions of other parts of
the CPU (ALU, memory interface, etc.).
These signals direct data movement, ALU
operation, register writes, and memory
accesses.

 5. Control Instruction (PC):
Manages the Program Counter, which holds the
address of the next instruction to be executed.
Handles instruction sequencing, updating the PC after
each instruction or adjusting it for branch and jump
operations.

 6. Status Flag Register:
Contains flags that hold status information about the
result of previous operations (e.g., Zero, Carry,
Overflow, Sign flags).
These flags help the Control Unit make decisions
regarding branching and conditional operations.

 7. Timing and Clock Control:
Coordinates the timing of operations across the CPU
with the help of clock signals.
Ensures that all parts of the processor operate in sync
and that each step of the instruction cycle is executed
at the correct time.

 8. Branch and Jump Control:
 Manages control transfer instructions, such as

branches, jumps, and calls.
Works with the Branch Prediction Unit (in modern
processors) to optimize branching and minimize
delays caused by pipeline stalls.

 9. Interrupt Control:
Handles interrupts by suspending the current
execution and transferring control to the appropriate
interrupt service routine.
Prioritizes interrupts and manages interrupt requests.

 10. Microprogram Control Storage (in
microprogrammed Cus):
In microprogrammed control units, the control signals
are generated by executing a sequence of
microinstructions stored in a microprogram memory
(control memory).
Each instruction in the CPU is mapped to a set of
microinstructions that control specific low-level
operations.

Pipeline Version of Data-path

Pipeline Version of Control Path

Topics
1. Basic Processor Architecture
2. Problems with Single Cycle Processor Architecture
3. Processor Architectures and Types

• Processor Architecture
• Types of Processors

Procesor Architectures

 Pipeline Architecture
 Superscalar Architecture
 Out-of-Order Execution (OoOE)
 In-Order Execution
 VLIW (Very Long Instruction Word) Architecture
 SIMD (Single Instruction, Multiple Data) Architecture
 MIMD (Multiple Instruction, Multiple Data) Architecture

 Pipeline Architecture
 In pipelining, each instruction goes through several

stages (fetch, decode, execute, etc.).
 Each stage processes a different instruction

simultaneously, similar to an assembly line.

 Superscalar Architecture
 Like pipelining, but instead of processing just one instruction per stage,

superscalar processors can handle multiple instructions in the same stage,
using multiple pipelines.

 It increases performance by allowing the processor to handle more instructions
in parallel.

 Out-of-Order (OoO) and In-Order Execution
 Instructions don’t need to be executed in the same order they appear in the

program. The processor executes instructions when their inputs are ready,
optimizing the use of execution units. It avoids idle time by allowing other
instructions to proceed when one is stalled (e.g., waiting for data).

 In-Order Executes the Instructions strictly in the order they are fetched.
Simplicity and lower power consumption.

 VLIW, SIMD, MIMD

 VLIW: Multiple operations are packed into a single "long instruction"
that the processor executes in parallel. Increases parallelism, but it’s
the compiler's job to group instructions efficiently.

 SIMD: One instruction operates on multiple data points at the same
time, useful in tasks like multimedia processing (e.g., working on
many pixels simultaneously). High efficiency for tasks with lots of
repetitive operations.

 MIMD: Different processors or cores execute different instructions on
different data simultaneously, often in multi-core processors. True
parallelism for different tasks or programs running at the same time.

Processor Types
 ARM (Advanced RISC Machine)
 MIPS (Microprocessor without Interlocked Pipeline Stages)
 x86 (Intel and AMD)
 SPARC (Scalable Processor Architecture)
 PowerPC (Power Performance Computing)
 DSP (Digital Signal Processors)
 VLIW (Very Long Instruction Word) Architectures
 GPU (Graphics Processing Unit) Architectures

	Slide 1
	Topics
	Basic Processor Architecture
	Slide 4
	Topics (2)
	Drawback of Single Cycle Processor
	Multi-Cycle Implementation
	Slide 8
	Slide 9
	Pipelining
	Pipeline Instruction
	Pipeline Hazards
	Data Hazard
	Control Hazard
	Structural Hazard
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Pipeline Version of Data-path
	Pipeline Version of Control Path
	Slide 24
	Topics (3)
	Contents
	Procesor Architectures
	Pipeline Architecture
	Superscalar Architecture
	Out-of-Order (OoO) and In-Order Execution
	VLIW, SIMD, MIMD
	Processor Types

