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Basic Processor Architecture
Processor Architecture refers to the design and organization of a processor’s central processing 
unit (CPU).
Components of Processor:

• Arithmetic and Logic Unit: Performs mathematical calculations.

• Control Unit: Control the overall processing of the processor.

• Decoders Unit: Convert coded instructions into signals that can control other components.

• Registers: Hold data, instructions, and addresses temporarily during processing.

• Buses: Electrical pathways that transmit data and signals between components. Types include the data 
bus, address bus, and control bus.



• Clock: Generates timing signals to synchronize the 
operations of the CPU components. The clock speed 
determines how many instructions per second the 
CPU can execute.

• Instruction Set Architecture (ISA): Defines the set of 
instructions the CPU can execute

• Cache: Stores frequently accessed data and 
instructions to speed up processing.

• Memory Management Unit (MMU): Handles the 
translation of virtual addresses to physical addresses. 
Manages memory protection and caching.

• Input/Output (I/O) Interfaces: Allow the CPU to 
communicate with peripheral devices. Include ports 
and controllers for devices such as keyboards, mice, 
and storage.

• Power Control Unit:



Arithmetic Logic Unit ALU:

In computing, an arithmetic logic unit (ALU) is a combinational digital circuit that performs 
arithmetic and bitwise operations on integer binary numbers.
It is a fundamental building block of many types of computing circuits, including the central 
processing unit (CPU) of computers, FPUs, and graphics processing units (GPUs).

Functions of ALU:

Basic Operations Basic Instructions
Arithmetic operations Addition, Subtraction, Multiplication, division
Logical operations Logical Sum(OR), Logical Product(AND), Logical negation (NOT)
Comparison Comparison Instruction (size compare)
Branch Branch instructions to alter the instruction sequence based on conditions



Registers
 Registers are a type of computer memory built directly into the processor that is used to store and 

manipulate data during the execution of instructions. 
• A register may hold an instruction, a storage address, or any kind of data (such as a bit sequence or 

individual characters).
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Registers in Processor Architecture

Program Counter 
Keeps track of the memory address of 
the next instruction to be fetched and 
executed.

Status Register
Indicates the outcome of arithmetic and 
logic operations, such as carry, overflow, 
zero, and others.

Address Register

Control RegisterGeneral-Purpose Registers

Instruction Register
Holds the currently fetched instruction 
being executed.

Accumulator
Used for arithmetic and logical 
operations. It stores intermediate results 
during calculations.

Stack Pointer
Manage the stack for function calls and 
local variable storage.

Data Registers
Store data fetched from memory or 
obtained from input/output operations.
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Control Unit:

The control unit controls all the operations of the processor. It retrieves, decodes and 
executes the code instructions one-by-one in the order they are stored in the main memory.
It instructs the arithmetic logic unit, memory, input/output devices how to respond to the 
instructions of the program.



Stages: Execution Clock Cycles 



Instruction Set Architecture (ISA)

An Instruction Set Architecture (ISA) is part of the abstract model of a computer that 
defines how the CPU is controlled by the software. 
• The ISA acts as an interface between the hardware and the software, specifying both 
what the processor is capable of doing as well as how it gets done.

• The ISA defines the supported data types, the registers, how the hardware manages 
main memory, key features (such as virtual memory), which instructions a 
microprocessor can execute, and the input/output model of multiple ISA 
implementations.

• Provides:
 Programmability
 Flexibility
 Reusablility  
 Adaptability
 Accessibility  



Instruction Set Format
A form of representation of an instruction composed of fields of binary numbers.”
Fields of instruction:
There are several fields of the instruction that serve a specific role in the format. Some common are fields are given 
below:
1. Opcode: 

• Specifies the operation to be performed (e.g., add, subtract, load, store). 
• Determines what action the CPU should take.

2. Operand:
• The data or the addresses of the data on which the operation is to be performed. 
• Can include immediate values, register addresses, or memory addresses.

3.   Addressing Modes: 
Processor uses different Addressing modes Common modes include: 
immediate, direct, indirect, register, and indexed addressing.
4.   Registers: 
Specifies which CPU registers are to be used in the operation. 
Could include source and destination registers.



Instruction Types

A computer’s instructions can be any length and have any number of 
addresses. 
• The arrangement of a computer’s registers determines the different address 
fields in the instruction format. 

• The instruction can be classified as three, two, and one address instruction 
or zero address instruction, depending on the number of address fields.

Based on these differences the instructions are classified as
1) Three Address Instruction
2) Two Address Instruction
3) One Address Instruction 
4) Zero Address Instruction



Three Address Instruction:
Three-address instruction is a format of machine instruction. It has one 
opcode and three address fields. 
One address field is used for destination and two address fields for 
source.

Example:

OPCODE DESTINATION SOURCE 1 SOURCE 2

ADD R1, A, B R1 = M[A] + M[B]

ADD R2, C, D R2 = M[C] + M[D]

MUL X, R1, R2 M[X] = R1 * R2



Two Address Instruction:
Two-address instruction is a format of machine instruction. It has one 
opcode and two address fields which may be memory locations or 
registers.. 
One address field is used for destination and one address field for source.
For example, a two-address instruction might add the contents of two 
registers together and store the result in one of the registers.

OPCODE DESTINATION SOURCE

MOV R1, A R1 = M[A]

ADD R1, B R1 = R1 + M[B]

Example
:



One Address Instruction:

These instructions specify one operand or address, which typically refers 
to a memory location or register. 
The instruction operates on the contents of that operand, and the result 
may be stored in the same or a different location. 
For example, a one-address instruction might load the contents of a 
memory location into a register.

Example:

OPCODE DESTINATION

STORE T M[T] = AC

LOAD C AC = M[C]



Zero Address Instruction:

These instructions do not specify any operands or addresses. 
Instead, they operate on data stored in registers or memory 
locations implicitly defined by the instruction. 
For example, a zero-address instruction might simply add the 
contents of two registers together without specifying the register 
names.



Types of Instructions and Addressing Modes 

Implied Mode
Example: CLC ; Clear the carry flag, no operands needed

Immediate Mode
Example: ADDI x1, x2, 10 ; Add immediate value 10 to register x2 and store result in x1

Register Mode
Example: MOV r0, r1 ; Move the contents of register r1 to register r0

Register Indirect Mode
Example: LW $t0, 0($t1) ; Load the word at the address in $t1 into $t0



Autodecrement Mode
Example: MOV -(R1), R0 ; Decrement R1 and then move the value at the new address in R1 to R0

Autoincrement Mode
Example: MOV (R1)+, R0 ; Move the value at the address in R1 to R0, then increment R1

Direct Address Mode
Example: LDA $4000 ; Load the accumulator with the value at memory address $4000

Indirect Address Mode
Example: JMP ($1234) ; Jump to the address stored at memory location $1234

Indexed Addressing Mode
Example: MOV AX, [BX+SI] ; Move the value at address (BX + SI) into AX











Instructions Types
    R-type: Integer computation instructions on registers.
    I-type:  Integer computation instructions on registers and immediate values. Also 
includes JALR, Load instructions.
    S-type: Store instructions.
    B-type: Branch instructions.
    U-type: Special instructions like LUI, AUIPC.
    J-type:  Jump instructions like JAL.





Important Parameters of a Processor
ISA →
 Arithmetic Logic Unit (ALU): Performs arithmetic and logical operations.
 Floating Point Unit (FPU): Performs floating-point arithmetic operations (optional in some architectures).
 Registers: Small, fast storage locations within the CPU, used to store data and instructions temporarily.
 Control Unit (CU): Directs operations of the processor, including instruction decoding and execution control.
 Program Counter (PC): Holds the address of the next instruction to be executed.
 Instruction Register (IR): Holds the current instruction being executed.
 Branch Predictor: Predicts the outcome of conditional branches to reduce instruction execution delays.
 Bus Interface Unit (BIU): Manages data flow between the processor and external components like memory or 

peripherals.
 Pipeline: Allows overlapping execution of instructions to improve performance.
 Cache Memory: High-speed memory closer to the CPU, used to store frequently accessed data.
 Memory Management Unit (MMU): Manages memory access and translation between physical and virtual addresses.
 Input/Output (I/O) Unit: Handles communication with external devices.



Control Unit
 The Control Unit (CU) of a processor is responsible for directing the flow of data and the sequence of 

operations within the CPU. It coordinates the activities of the processor by interpreting and executing 
instructions. The CU can be broken down into several sub-parts, each handling specific tasks. Here are the 
main sub-parts:

  Instruction Decoder
  Sequencing Logic
 Control Logic Circuit
  Control Signal Generator
  Program Counter (PC) Control
  Status Flag Register
  Microprogram Control Storage
  Timing and Clock Control
  Branch and Jump Control
  Interrupt Control







 1. Instruction Decoder:
 Decodes the fetched instruction from 

memory into signals that specify the 
operation to be performed.
Breaks down machine code into control 
signals that tell various parts of the 
processor what to do next.

 2. Sequencing Logic:
 Controls the order in which operations 

are carried out by determining the next 
instruction to be executed (through the 
Program Counter). 
Manages the fetching, decoding, and 
execution cycle of instructions.
Synchronizes the processor's operation, 
often tied to the system clock.



 3. Control Logic Circuit:
 Contains the logic gates and 

combinational circuits that generate 
control signals based on the instruction 
decoded.
These control signals manage the 
internal data flow, timing, and operation of 
functional units (ALU, registers, etc.).

 4. Control Signal Generator:
 Generates the necessary control signals 

that dictate the actions of other parts of 
the CPU (ALU, memory interface, etc.).
These signals direct data movement, ALU 
operation, register writes, and memory 
accesses.



 5. Control Instruction (PC):
Manages the Program Counter, which holds the 
address of the next instruction to be executed. 
Handles instruction sequencing, updating the PC after 
each instruction or adjusting it for branch and jump 
operations.

 6. Status Flag Register:
Contains flags that hold status information about the 
result of previous operations (e.g., Zero, Carry, 
Overflow, Sign flags).
These flags help the Control Unit make decisions 
regarding branching and conditional operations.

 7. Timing and Clock Control:
Coordinates the timing of operations across the CPU 
with the help of clock signals.
Ensures that all parts of the processor operate in sync 
and that each step of the instruction cycle is executed 
at the correct time.



 8. Branch and Jump Control:
 Manages control transfer instructions, such as 

branches, jumps, and calls.
Works with the Branch Prediction Unit (in modern 
processors) to optimize branching and minimize 
delays caused by pipeline stalls.

 9. Interrupt Control:
Handles interrupts by suspending the current 
execution and transferring control to the appropriate 
interrupt service routine. 
Prioritizes interrupts and manages interrupt requests.

 10. Microprogram Control Storage (in 
microprogrammed Cus):
In microprogrammed control units, the control signals 
are generated by executing a sequence of 
microinstructions stored in a microprogram memory 
(control memory).
Each instruction in the CPU is mapped to a set of 
microinstructions that control specific low-level 
operations.
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How do you define CPU performance?
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Defining Performance
 Which airplane has the best performance?



Chapter 1 — Computer Abstractions and Technology — 35

Defining Performance
 Response time:

 How long it takes to do a task.
 It is also called execution time.
 It includes disk access, memory access, I/O activities.

 Throughput :
 Total amount of work done in a given time.
 e.g., tasks/transactions/… per hour.

 We’ll focus on response time for now…
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Relative Performance
 Performance defined as:

 Then to evaluate two computers A & B .

 Can be phrased as “Processor X is n times faster than Processor Y”
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Relative Performance
 Example: Assume a program runs in

 10s on Processor A.
 15s on Processor B.
 How much is A faster than B.

So, A is 1.5 times faster than B

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒𝑜𝑓 𝐵
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒𝑜𝑓 𝐴=15

10
=1.5
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Execution Time
 How do you measure execution time?
 Elapsed time

 Total response time, including all aspects
 Processing, I/O, OS overhead, idle time

 Determines system performance
 CPU time

 Time spent processing a given job
 Discounts I/O time, other jobs’ shares

 Different programs are affected differently by CPU and system 
performance
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CPU Clocking
 Operation of digital hardware governed by a constant-rate clock

Clock (cycles)

Data transfer
and computation

Update state

Clock period

 Clock frequency (rate): cycles per second
 e.g., 4.0GHz = 4000MHz = 4.0×109Hz

 Clock period: duration of a clock cycle
 e.g., 250ps = 0.25ns = 250×10–12s
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CPU Time

 Performance improved by
 Reducing number of clock cycles
 Increasing clock rate
 Hardware designer must often trade off clock rate against cycle 

count

Rate Clock
Cycles Clock CPU

Time Cycle ClockCycles Clock CPUTime CPU
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CPU Time
 Computer A run a program in 10 seconds with a 2 GHz clock. 

We have to design a computer B such that it can run the same 
program within 6 seconds. Determine the clock rate for computer 
B. Assume that due to increase in clock cycle rate , CPU design 
of computer B is affected, and it requires 1.2 times as many 
clock cycles as computer A for execution this program.
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CPU Time Example
 Computer A: 2GHz clock, 10s CPU time
 Designing Computer B such that:

 Aim for 6s CPU time
 Can do faster clock, but causes 1.2 × clock cycles

 How fast must Computer B clock be?

4GHz
6s

1024
6s

10201.2Rate Clock

10202GHz10s

Rate ClockTime CPUCycles Clock

6s
Cycles Clock1.2

Time CPU
Cycles ClockRate Clock

99

B

9

AAA

A

B

B
B
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Instruction Performance
 The computer had to execute the instructions to run the program.
 The execution time must depend on the number of instructions in 

a program.
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Instruction Count and CPI

 Instruction Count for a program
 Determined by program, ISA and compiler

 Average cycles per instruction
 Determined by CPU hardware

Rate Clock
CPICount nInstructio

Time Cycle ClockCPICount nInstructioTime CPU

nInstructio per CyclesCount nInstructioCycles Clock
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CPI Example

 Computer A – Cycle Time = 250ps, CPI = 2.0 
 Computer B – Cycle Time = 500ps, CPI = 1.2 
 Same ISA 
 Which is faster? By how much? 
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CPI Example
 Computer A: Cycle Time = 250ps, CPI = 2.0
 Computer B: Cycle Time = 500ps, CPI = 1.2
 Same ISA
 Which is faster, and by how much?

1.2
500psI
600psI

ATime CPU
BTime CPU

600psI500ps1.2I
BTime CycleBCPICount nInstructioBTime CPU

500psI250ps2.0I
ATime CycleACPICount nInstructioATime CPU















A is faster…

…by this much
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CPI in More Detail
 If different instruction classes take different numbers of 

cycles





n

1i
ii )Count nInstructio(CPICycles Clock

 Weighted average CPI










 

n

1i

i
i Count nInstructio

Count nInstructioCPI
Count nInstructio

Cycles ClockCPI

Relative frequency
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CPI Example
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CPI Example
 Alternative compiled code sequences using instructions in classes 

A, B, C

Class A B C
CPI for class 1 2 3
IC in sequence 1 2 1 2
IC in sequence 2 4 1 1

 Sequence 1: IC = 5
 Clock Cycles

= 2×1 + 1×2 + 2×3
= 10

 Avg. CPI = 10/5 = 2.0

 Sequence 2: IC = 6
 Clock Cycles

= 4×1 + 1×2 + 1×3
= 9

 Avg. CPI = 9/6 = 1.5
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Performance Summary

 Performance depends on
 Algorithm: affects IC, possibly CPI
 Programming language: affects IC, CPI
 Compiler: affects IC, CPI
 Instruction set architecture: affects IC, CPI

The BIG Picture

cycle Clock
Seconds

nInstructio
cycles Clock

Program
nsInstructioTime CPU 
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Power Trends

 In CMOS IC technology

FrequencyVoltageload CapacitivePower 2 

×1000×30 5V → 1V
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Processors Types
 General Purpose Processor
 Digital Signal Processor
 Vector Processor 
 Application specific Processor



Flynn Taxonomy

 The matrix below defines the 4 possible classifications 
according to Flynn 



Types of Processor ISA
Reduced Instruction Set Computing (RISC) vs Complex Instruction Set Computing (CISC)

Aspect RISC CISC

Instructions Per Cycle Small and fixed length Large and variable length

Instruction Complexity Simple and standardised Complex and versatile

Instruction Execution Single clock cycle Several clock cycles

RAM Usage Heavy use of RAM More efficient use of RAM

Memory Increased memory usage to store 
instructions Memory efficient coding

Cost Cheaper than CISC Higher



RISC vs CISC

The RISC approach has several advantages over CISC: 
• Simplifies Hardware Implementation: It simplifies the hardware 

implementation of the processor, as fewer instructions need to be 
decoded and executed. This can lead to faster execution times and 
lower power consumption. 

• Higher Instruction Level Parallelism: RISC processors typically 
have a higher instruction-level parallelism, allowing them to execute 
multiple instructions simultaneously, which can further improve 
performance. 

• Simplicity: The simplicity of the RISC instruction set makes it easier to 
develop compilers and other software tools that can generate efficient 
code for the processor.



RISC vs CISC
RISC is a processor design philosophy that emphasizes simplicity and 
efficiency by using a small set of simple and general-purpose 
instructions. 
• The complex instruction set computing (CISC), employs a larger set 

of more complex instructions that can perform multiple operations in a 
single instruction.

• RISC architectures prioritize simplicity and execute one instruction per 
clock cycle, resulting in streamlined designs and efficient decoding. 

• CISC architectures, on the other hand, employ complex instructions 
capable of performing multiple actions but may require several clock 
cycles for execution. Both the CPUs aim to enhance CPU performance.



Single-purpose processors
Digital circuit designed to execute exactly one program
a.k.a. coprocessor, accelerator or peripheral
Features
Contains only the components needed to execute a single 
program
No program memory
Benefits
Fast
Low power
Small size

DatapathController

Control logic

State register

Data
memory

index

total

+



Embedded System Processor Architecture
 Reduced Instruction Set Computing (RISC):

 Common architectures: ARM, RISC-V.
 Simple, efficient instruction set optimized for low power and high performance.

 System on Chip (SoC):
 Frequently used in embedded systems.
 Integrates CPU, memory, peripherals, and other components on a single chip.

  Microcontroller Units (MCUs):
 Often used in simpler embedded applications.
 Includes integrated peripherals like ADCs, DACs, timers, and communication interfaces.

 Real-Time Capabilities:
 Designed for deterministic performance and real-time operating system (RTOS) support.

 Low Power Consumption:
 Architectures and components optimized for minimal power usage.

 Integrated Analog and Digital Peripherals:
 Features like GPIOs, serial communication interfaces, and specialized hardware accelerators.

IR PC

Registers

Custom
ALU

DatapathController

Program 
memory

Assembly 
code for:

  total = 0
  for i =1 to …

Control 
logic and 

State 
register

Data
memory



Digital Signal Processor

Specialized Instruction Set:
    Optimized for mathematical operations like multiply-accumulate (MAC).
    Single-cycle multiply and MAC instructions.
Harvard Architecture:
    Separate program and data memories to allow simultaneous access and 
increase throughput.
Specialized Data Path:
    Multiple data buses and address buses.
    Dedicated hardware for specific tasks such as FFT (Fast Fourier 
Transform) and filters.
High-Performance ALUs:
    Multiple arithmetic logic units (ALUs) to perform parallel operations.
    Support for fixed-point and floating-point arithmetic.
Circular and Bit-Reversed Addressing:
    Efficiently manage circular buffers and data structures used in signal 
processing.
Low-Latency Memory Access:
    On-chip RAM with very low access latency.
    Multi-level cache hierarchy optimized for predictable access patterns.



General-Purpose Processor (GPP) Architecture
 Complex Instruction Set Computing (CISC):

 Common architecture: x86.
 Rich instruction set with complex instructions.
 Often integrates many features directly in hardware.

 Multi-Core and Hyper-Threading:
 Multiple cores for parallel processing.
 Hyper-threading for improved performance through parallel execution within 

each core.
  Large Cache Hierarchy:

 Multiple levels of cache (L1, L2, L3) to reduce latency and increase speed.
 Advanced Branch Prediction and Speculative Execution:
 Techniques to predict instruction paths and execute ahead to improve 

performance.
  Integrated Memory Management Unit (MMU):

 Manages virtual memory, enabling sophisticated operating system features.
 High-Speed Interconnects:

 Fast communication between CPU, memory, and peripherals.
  Graphics Processing Unit (GPU) Integration:

 Some GPPs include integrated GPUs for handling graphics processing tasks.
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RISC-V Processor Architecture

The RISC-V (pronounced as risk-five) architecture is an  open-source instruction set 
architecture (ISA) implementation of reduced instruction set computing RISC.
RISC-V is open-hardware architecture, its open source allows anyone to utilize the ISA.
History of RISC-V
 Prof. Krste Asanović and graduate students Yunsup Lee and Andrew Waterman started the RISC-V instruction 

set in May 2010 as part of the Parallel Computing Laboratory (Par Lab) at UC Berkeley, of which Prof. David 
Patterson was Director. 

 No patents were filed related to RISC-V in any of these projects, as the RISC-V ISA itself does not represent any 
new technology. 

 RISC processor implementations—including some based on other open ISA standards— are widely available 
from various vendors worldwide.

https://parlab.eecs.berkeley.edu/


Processor Architecture
Base Instruction Set

 

 

Extension:

 

Base and Extension of RISC-V



RISCV: Registers and Mapping
RISC-V uses a memory-mapped I/O architecture, which means 

that input and output operations, memory access, and 
peripheral access are all performed using the same load and 
store instructions. 

This unified approach simplifies the instruction set and 
enhances the flexibility and efficiency of the architecture. 
There are two basic types of instructions:

 Instructions that either load memory into registers or store data from 
registers into memory

 Instructions that perform arithmetical or logical operations between two 
registers



Why RISC-V

Open Hardware: Allowing anyone to design, 
implement, and customize processors without 
restrictions, fostering innovation and 
collaboration within the community.
Royalty-Free: There are no licensing fees, 
reducing costs for developers and 
manufacturers.
Security: Rigorous security analysis and the 
implementation of custom security features, 
enhancing trustworthiness.



Types of RISC-V Processor Architectures
 RISC-V provides a detailed, open Instruction Set Architecture (ISA), which serves as a blueprint 

for designing processors architecture.
 Single-Cycle Architecture:
 Multi-Cycle Architecture:
 Pipelined Architecture:
 Superscalar Architecture:
 Out-of-Order Execution:
 Very Long Instruction Word (VLIW) Architecture:
 Vector Processing Architecture:
 Custom Instruction Set Extensions:





Defining/Designing RISC-V Processor Architecture

 Fetch: Retrieve the instruction from memory.
 Decode: Interpret the instruction and prepare operands.
 Execute: Perform the computation or operation (ALU 

operations, branches).
 Memory: Access memory for load/store operations.
 Writeback: Write the result to the register file or memory.



5 Stages of Processor Arch
 Fetch Unit
    Function: Retrieves instructions from memory.
PC Usage: The PC holds the address of the next instruction to be fetched. After fetching an 
instruction, the PC is typically incremented to point to the next instruction address.
Example: If the starting address of the first instruction is 0x8000000, the Fetch Unit will 
fetch the instruction from address 0x8000000 initially.
 Decode Unit
    Function: Interprets the fetched instruction to determine its operation and operands.
    Memory Access: Decodes memory addresses and identifies whether they are for RAM, 
ROM, or I/O devices. It also decodes which registers are involved.
    ALU: Determines the type of ALU operation required (e.g., addition, subtraction) and 
prepares operands for execution.
    Example: Decodes an instruction to add two registers and prepare the operands for the 
ALU.



Execute Unit
    Function: Performs the arithmetic or logical operations as specified by the instruction.
    ALU: Executes ALU operations (e.g., addition, subtraction) using the operands provided by the 
Decode Unit.
    Memory Access: Computes effective addresses for load/store operations.
    Example: Executes an addition operation on two registers or calculates the address for a load 
instruction.

Memory Unit
    Function: Accesses memory or I/O based on the address computed in the Execute stage.
    Memory Access: Performs read/write operations to RAM or memory-mapped I/O devices based 
on the effective address.
    Example: Reads data from address 0x00002000 in RAM or writes data to a memory-mapped 
I/O device at 0x20000000.

Write Back Unit
    Function: Writes the result of computations or memory accesses back to the register file or 
memory.
    Memory Access: Updates the register file with results from the Memory Unit or ALU operations.
    Example: Writes the result of an addition operation back to a register or stores data retrieved 
from memory to a register.



Pipe-lined VS Single Cycle Processor Architecture 



5 Stage Pipelined Processor Architecture 
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Instruction Set Architecture is like the language 
that a computer's hardware understands. I

 ISA is a set of instructions that tells the computer's processor what to do. These 
instructions are basic operations like adding two numbers, moving data from one 
place to another, or jumping to a different part of a program.

 The ISA defines the "rules" of computer architecture or the "language" that the CPU 
uses to execute instructions. 

 It determines what the processor can do. If a processor supports a particular ISA, it 
can execute any program written in that ISA.

 It also ensures that different programs can run on different computers as long as 
those computers understand the same ISA.

 It’s like setting the vocabulary and grammar for a conversation between 
software and hardware.

 It is is the language that a computer's hardware understands. I



Commercial ISA
 Commercial ISAs are proprietary.
  Commercial ISAs are only popular in certain market domains. 
  Commercial ISAs come and go. 
  Popular commercial ISAs are complex.
  Commercial ISAs alone are not enough to bring up applications. 
  Popular commercial ISAs were not designed for extensibility. 
  A modified commercial ISA is a new ISA. 



OpenRISC



RISCV Instructions Set
 RISC-V (Reduced Instruction Set Computing V) is an open standard instruction set 

architecture (ISA) that is designed to be scalable and extensible. The number of 
instructions in RISC-V can vary based on the specific subset or extensions of the ISA 
being used. Here's a breakdown of the primary RISC-V instruction sets and their 
respective instruction counts:

     Base ISA:
 RV32I (32-bit Integer): The base integer instruction set for 32-bit processors includes 

approximately 47 instructions.
 RV64I (64-bit Integer): The base integer instruction set for 64-bit processors extends RV32I and 

includes a few additional instructions specific to 64 bit operations.



Instruction Extensions
 Standard Extensions:

 M (Multiply/Divide): Adds multiply and divide instructions.
 A (Atomic): Adds atomic instructions for synchronization.
 F (Single-Precision Floating-Point): Adds single-precision floating-point instructions.
 D (Double-Precision Floating-Point): Adds double-precision floating-point instructions.
 Q (Quad-Precision Floating-Point): Adds quad-precision floating-point instructions.
 C (Compressed): Adds compressed instructions to reduce code size.

 Other Extensions:
 B (Bit-Manipulation): Adds instructions for bit manipulation.
 V (Vector): Adds vector processing instructions.
 P (Packed-SIMD): Adds packed SIMD instructions.
 Z (Various small extensions): These include specific sets of instructions like Zifencei for 

instruction-fence or Zicsr for control and status registers.



Basic RISCV Processor 
 The 47 standard instructions in RV32I include:

 Arithmetic Instructions: ADD, SUB, MUL, etc.
 Logical Instructions: AND, OR, XOR, etc.
 Immediate Instructions: ADDI, ORI, XORI, etc.
 Load Instructions: LB, LH, LW, etc.
 Store Instructions: SB, SH, SW, etc.
 Branch Instructions: BEQ, BNE, BLT, etc.
 Jumps: JAL, JALR
 System Instructions: ECALL, EBREAK
 Other Instructions: NOP, AUIPC, LUI, etc.



Types of RISCV ISA

RISC-V Instruction Set: 
The RISC-V instruction set is a collection of instructions that define the operations a RISC-V 
processor can perform. 
These instructions are designed to be simple, efficient, and easily extensible, allowing for a high 
degree of customization and optimization.
Instruction Types:
1. R-Type (Register Type): Used for register-register arithmetic and logical operations.

2. I- Type (Instruction Type): Used for immediate arithmetic, load instructions, and register-immediate operations.

3. S-Type (Store Type): Used for store instructions.

4. U-Type (Upper Immediate Type) : Used for upper immediate instructions

5. B-Type (Branch Type) : Used for conditional branch instructions.

6. J-Type (Jump Type) : Used for jump instructions like JAL.

7. F-Type (Floating-Point) Instructions

8. A-Type (Atomic) Instructions

9. C-Type (Compressed) Instructions



Registers
 Total Registers: 32 general-purpose registers, additional special-purpose 

and control registers.
 General Purpose Registers: x0 to x31, with specific roles for some registers.
 Special Purpose Registers: Includes PC, SP, GP, TP.

 Program Counter (PC): Holds the address of the current instruction being executed.
 Instruction Register (IR): Holds the current instruction being executed (in some 

implementations).
 Stack Pointer (SP): Points to the top of the stack.
 Global Pointer (GP): Points to the global data region.
 Thread Pointer (TP): Points to the thread-local storage.

 Control and Status Registers: Includes MSR, MEPC, MCAUSE, MSTATUS, MTVEC.
 Machine Status Register (MSR): Controls machine-level status and configuration.
 Machine Exception Program Counter (MEPC): Holds the address of the instruction where an 

exception occurred.
 Machine Cause Register (MCAUSE): Contains information about the cause of the last 

exception.
 Machine Status Register (MSTATUS): Holds the status of the machine, including interrupts and 

mode.
 Machine Trap Vector Base Address Register (MTVEC): Base address for the trap vector.

 Floating-Point Registers: If included, f0 to f31 for floating-point operations.



RISC-V Instruction Format

https://www.cs.sfu.ca/~ashriram/Courses/CS295/assets/notebooks/RISCV/RISCV_CARD.pdf



RISC-V Instructions and Formats







RISC-V Instruction Format: 1: R-Type

func7 rs2 rs1 func3 rd opcode

31      25       24     20     19          15       14                    12    11                     7           6              0

Field No. O f bits Function

opcode: R1, A, B Basic operation of the instruction, and this abbreviation is its traditional name. 

oprand: R2, C, D The register destination operand. It gets the result of the operation

funct3: X, R1, R2 An additional opcode field. 

rs1: The first register source operand. 

rs2: The second register source operand. 

func7 An additional opcode field.



Immediate: I-Type
imm[11:0] rs1 func3 rd opcode

31                     20 19          15   14             12    11               7    6             0

Field No. O f bits Function

opcode: R1, A, B Basic operation of the instruction, and this abbreviation is its traditional name. 

rd: R2, C, D The register destination operand. It gets the result of the operation

funct3: X, R1, R2 An additional opcode field. 

rs1: The first register source operand. 

imm The second register source operand. 



Store: S-Type
imm[11:5] rs2 rs1 func3 imm[4:0] opcode

31   25    24        20 19      15     14             12    11               7    6                0

i No. O f bits Function

opcode: R1, A, B Basic operation of the instruction, and this abbreviation is its traditional name. 

rd: R2, C, D The register destination operand. It gets the result of the operation

imm[4:0]: X, R1, R2 An additional opcode field. 

rs1: The first register source operand. 

rs2: The second register source operand. 

imm[11:5] An additional opcode field.

#x1 based address
SW x2, 0(x1) # Memory[x1 + 0] = x2



Branch: B-Type
imm[11:5] rs2 rs1 func3 imm[4:0] opcode

31   25       24           20     19      15      14             12    11               7    6              0

i No. O f bits Function

opcode: R1, A, B Basic operation of the instruction, and this abbreviation is its traditional name. 

rd: R2, C, D The register destination operand. It gets the result of the operation

imm[4:0]: X, R1, R2 An additional opcode field. 

rs1: The first register source operand. 

rs2: The second register source operand. 

imm[11:5] An additional opcode field.

BEQ x1, x2, equal # If x1 == x2, branch to label 'equal'



Jump: J-Type
 Unconditional jump with an optional link to store the return 

address.
 opcode (7 bits): Operation code that specifies the jump 

instruction (e.g., JAL).
 rd (5 bits): Destination register for the return address.
 immediate (20 bits): Jump target offset, which is used to 

calculate the jump address relative to the current program 
counter (PC).



Topics
1.  Basic Processor Architecture
2.  Different Types of Processor Architectures 
3.  RISC-V Processor Architecture
4.  RISC-V Instruction Set Architecture
5.  Programming RISC-V using assembly language





RISCV GCC Assembler
 
 
_start:  
ld s3 0x001121
Ld rs2 0x0022233
add rd, rs1, rs2
St rd 0x0000001
 



Assembly or C/C++
 Write Efficient Code
 Secure Application
 Multi-Threaded and Complex Program to run multiple devices (OS)
 Real-Time Applications for Real world Problems



Programming RISC-V

 Problem
 Write it in your own words
 Make Pseudo Code
 Create Control and Data-flow Graph
 Program (C/C++, ASM)
 Debug
 Profile
 Optimize/Fine Tune
 Execute
 Test

Flowchar
t



Hazards
 Data Hazards: Instructions are waiting for 

data from other instructions.
 Control Hazards: Changes in instruction flow 

cause delays.
 Structural Hazards: Limited hardware 

resources cause delays.



// example.c
int global_var = 10;
int main() {
    int local_var = 5;
    int result = global_var + 
local_var;
    return result;
}

riscv32-unknown-elf-gcc example.o -o example

 The compiler generates an 
object file in ELF format. This 
object file contains machine 
code, data, and metadata, 
organized into different 
sections like .text 
(code), .data (initialized data), 
and .bss (uninitialized data).



 Instruction Section: Contains the compiled 
machine code instructions (text section).

 Data Section: Contains initialized data 
(data section).

  The linker combines the code and data 
sections, resolves symbols, and sets up 
memory addresses.

 The linker script defines how different 
sections are mapped into the memory of 
the microcontroller. 

 It specifies memory regions and assigns 
addresses to different sections of the code 
and data.

 MEMORY
 {
     ROM (rx) : ORIGIN = 0x08000000, LENGTH = 512K
     RAM (rwx) : ORIGIN = 0x20000000, LENGTH = 64K
 }
  
 SECTIONS
 {
     .text : {
         *(.text)
     } > ROM
  
     .data : {
         *(.data)
     } > RAM
 }



 Next step involves using a 
programmer or debugger tool to 
flash the firmware into the RISCV 
System.
 Instruction Memory: The code from 

the .text section is loaded into the 
system instruction memory.

 Data Memory: The initialized data 
from the .data section is loaded into 
the system data memory.



The high addresses are the top of the figure and the low addresses 

are the bottom. 

The stack pointer (sp) starts at BFFF FFF0 hex and grows down 

toward the Static data. The text (program code) starts at 0001 0000hex 

and includes the statically-linked libraries.  

The Static data starts immediately above the text region; in this 

example, we assume that address is 1000 0000hex . Dynamic data, 

allocated in C by malloc(), is just above the Static data. Called the 

heap, it grows upward toward the stack. It includes the dynamically-

linked libraries.

Linker Script: Program and Data Memory Allocation 



Testing and Executing the Code
RIPES
https://ripes.me/
https://github.com/mortbopet/Ripes/releases/download/v2.2.6/Ripes-v2.2.6-win-x86_64.zip

Next: 
RISCV Micro Controller
RISCV Simulator and Emulators
RISCV Single Board Computer
 

https://ripes.me/
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