Processor Hardware and Instruction Set

Architecture

by: Tassadaq Hussain
Director Centre for Al and BigData
Professor Department of Electrical Engineering
Namal University Mianwali

Collaborations:
Barcelona Supercomputing Center, Spain
European Network on High Performance and Embedded Architecture and Compilation
Pakistan Supercomputing Center



Topics

1. Basic Processor Architecture

2. Different Types of Processor Architectures
3. RISC-V Processor Architecture

4. RISC-V Instruction Set Architecture

5. Programming RISC-V using assembly language



Basic Processor Architecture

Processor Architecture refers to the design and organization of a processors central processing
unit (CPU).

Components of Processor:

Arithmetic and Logic Unit: Performs mathematical calculations.

Control Unit: Control the overall processing of the processor.

Decoders Unit: Convert coded instructions into signals that can control other components.

Registers: Hold data, instructions, and addresses temporarily during processing.

Buses: Electrical pathways that transmit data and signals between components. Types include the data
bus, address bus, and control bus.
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Clock: Generates timing signals to synchronize the
operations of the CPU components. The clock speed
determines how many instructions per second the
CPU can execute.

Instruction Set Architecture (ISA): Defines the set of
instructions the CPU can execute

Cache: Stores frequently accessed data and
instructions to speed up processing.

Memory Management Unit (MMU): Handles the
translation of virtual addresses to physical addresses.
Manages memory protection and caching.

Input/Output (I/0) Interfaces: Allow the CPU to
communicate with peripheral devices. Include ports
and controllers for devices such as keyboards, mice,
and storage.

Power Control Unit:
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Arithmetic Logic Unit ALU:

In computing, an arithmetic logic unit (ALU) is a combinational digital circuit that performs
arithmetic and bitwise operations on integer binary numbers.

It is a fundamental building block of many types of computing circuits, including the central
processing unit (CPU) of computers, FPUs, and graphics processing units (GPUs).

Functions of ALU:

Basic Operations Basic Instructions

Arithmetic operations Addition, Subtraction, Multiplication, division
Logical operations Logical Sum(OR), Logical Product(AND), Logical negation (NOT)
Comparison Comparison Instruction (size compare)

Branch Branch instructions to alter the instruction sequence based on conditions



Registers

* Registers are a type of computer memory built directly into the processor that is used to store and
manipulate data during the execution of instructions.

* A register may hold an instruction, a storage address, or any kind of data (such as a bit sequence or
individual characters).
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Registers in Processor Architecture

Program Counter

Keeps track of the memory address of
the next instruction to be fetched and
executed.

Instruction Register
Holds the currently fetched instruction
being executed.

Accumulator

Used for arithmetic and logical
operations. It stores intermediate results
during calculations.

Stack Pointer
Manage the stack for function calls and
local variable storage.

General-Purpose Registers

Data Registers
Store data fetched from memory or

obtained from input/output operations.

Status Register

Indicates the outcome of arithmetic and
logic operations, such as carry, overflow,
zero, and others.

Address Register

Control Register




Control Unit:

The control unit controls all the operations of the processor. It retrieves, decodes and
executes the code instructions one-by-one in the order they are stored in the main memory.

It instructs the arithmetic logic unit, memory, input/output devices how to respond to the
instructions of the program.
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Instruction Set Architecture (ISA)

An Instruction Set Architecture (ISA) is part of the abstract model of a computer that
defines how the CPU is controlled by the software.

* The ISA acts as an interface between the hardware and the software, specifying both
what the processor is capable of doing as well as how it gets done.

The ISA defines the supported data types, the registers, how the hardware manages
main memory, key features (such as virtual memory), which instructions a

microprocessor can execute, and the input/output model of multiple ISA
implementations.
Provides:
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A form of representation of an instruction composed of fields of binary numbers.”

Fields of instruction:

There are several fields of the instruction that serve a specific role in the format. Some common are fields are given
below:

1. Opcode:
» Specifies the operation to be performed (e.g., add, subtract, load, store).
 Determines what action the CPU should take.

2. Operand:
The data or the addresses of the data on which the operation is to be performed.
« Can include immediate values, register addresses, or memory addresses.

3. Addressing Modes: ccis i R Hemory
Processor uses different Addressing modes Common modes include: Fraginam - A | it il
immediate, direct, indirect, register, and indexed addressing. i ' ‘ in'ﬂurum.&;dnm
4. Registers: MU g '.J_LLl 'Jl_l

Specifies which CPU registers are to be used in the operation. ' \_.f /

Could include source and destination registers. P mmanas ﬁ \ //v‘
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Instruction Types

A computer’s instructions can be any length and have any number of
addresses.

« The arrangement of a computer’s registers determines the different address
fields in the instruction format.

 The instruction can be classified as three, two, and one address instruction
or zero address instruction, depending on the number of address fields.

Based on these differences the instructions are classified as
1) Three Address Instruction

2) Two Address Instruction

3) One Address Instruction

4) Zero Address Instruction



Three Address Instruction:

Three-address instruction is a format of machine instruction. It has one
opcode and three address fields.

One address field is used for destination and two address fields for
source.

OPCODE DESTINATION  SOURCE 1 SOURCE 2
Example:
ADD R1, A, B R1 = M[A] + M[B]
ADD R2,C, D R2 = M[C] + M[D]

MUL X, R1, R2 M[X] = R1 * R2




Two Address Instruction:

Two-address instruction is a format of machine instruction. It has one

opcode and two address fields which may be memory locations or
registers..

One address field is used for destination and one address field for source.

For example, a two-address instruction might add the contents of two
registers together and store the result in one of the registers.

OPCODE DESTINATION SOURCE

Example

MOV R1, A R1 = M[A]

ADD R1, B R1 = R1 + M[B]




One Address Instruction:

These instructions specify one operand or address, which typically refers
to a memory location or regqister.

The instruction operates on the contents of that operand, and the result
may be stored in the same or a different location.

For example, a one-address instruction might load the contents of a
memory location into a register.

OPCODE DESTINATION

Example:

STORE T M[T] = AC

LOAD C AC = M[C]




Zero Address Instruction:

These Instructions do not specify any operands or addresses.
Instead, they operate on data stored in registers or memory
locations implicitly defined by the instruction.

For example, a zero-address instruction might simply add the
contents of two registers together without specifying the register
names.



Types of Instructions and Addressing Modes

Implied Mode
Example: CLC ; Clear the carry flag, no operands needed

Immediate Mode
Example: ADDI x1, x2, 10 ; Add immediate value 10 to register x2 and store result in x1

Register Mode
Example: MOV 10, r1 ; Move the contents of register r1 to register r0

Register Indirect Mode
Example: LW $t0, 0($t1) ; Load the word at the address in $t1 into $t0



Autodecrement Mode
Example: MOV -(R1), RO ; Decrement R1 and then move the value at the new address in R1 to RO

Autoincrement Mode
Example: MOV (R1)+, RO ; Move the value at the address in R1 to RO, then increment R1

Direct Address Mode
Example: LDA $4000 ; Load the accumulator with the value at memory address $4000

Indirect Address Mode
Example: JMP ($1234) ; Jump to the address stored at memory location $1234

Indexed Addressing Mode
Example: MOV AX, [BX+SI] ; Move the value at address (BX + SI) into AX



High-lewel swap{size_t v[]. size_t k}

language i
program sfize_t temp:
(im C) temp = wl[k];
vik]} = v[k+17]:
vik+1] = temp:
I
Assembly SwWap:
language sli1 x6. x11. 3
program add wB, x10, =6
(for RISC-WV) 1w x5 . 0(x6)
Tw »7 . A({x6E)
S W *x7F . ODO(=xb&)
S W ®xs5, 4(x6)
Jalr xO, O(x1)

Binary machine coo00000001101011 0010011 0001001 1

language 000000001 1001000000011 00110011
program CO00000O0000001 1001100100000 01 1
(for RISC-V) CO000C0010000011001100111000001 1

000000001311 0011001100003010001 1

o000 C0D00101001 100110100001 0001 1
OO0 o0O000000001 0000000011 00111
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Instructions Types

R-type: Integer computation instructions on registers.

I-type: Integer computation instructions on registers and immediate values. Also
includes JALR, Load instructions.

S-type: Store instructions.

B-type: Branch instructions.

U-type: Special instructions like LUI, AUIPC.

J-type: Jump instructions like JAL.
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Important Parameters of a Processor

ISA -

Arithmetic Logic Unit (ALU): Performs arithmetic and logical operations.

Floating Point Unit (FPU): Performs floating-point arithmetic operations (optional in some architectures).

Registers: Small, fast storage locations within the CPU, used to store data and instructions temporarily.

Control Unit (CU): Directs operations of the processor, including instruction decoding and execution control.
Program Counter (PC): Holds the address of the next instruction to be executed.

Instruction Register (IR): Holds the current instruction being executed.

Branch Predictor: Predicts the outcome of conditional branches to reduce instruction execution delays.

Bus Interface Unit (BIU): Manages data flow between the processor and external components like memory or
peripherals.

Pipeline: Allows overlapping execution of instructions to improve performance.

Cache Memory: High-speed memory closer to the CPU, used to store frequently accessed data.

Memory Management Unit (MMU): Manages memory access and translation between physical and virtual addresses.
Input/Output (I/O) Unit: Handles communication with external devices.



Control Unit

The Control Unit (CU) of a processor is responsible for directing the flow of data and the sequence of
operations within the CPU. It coordinates the activities of the processor by interpreting and executing
instructions. The CU can be broken down into several sub-parts, each handling specific tasks. Here are the
main sub-parts:

Instruction Decoder
Sequencing Logic

Control Logic Circuit

Control Signal Generator
Program Counter (PC) Control
Status Flag Register

Microprogram Control Storage
Timing and Clock Control
Branch and Jump Control
Interrupt Control
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1. Instruction Decoder:

Decodes the fetched instruction from
memory into signals that specify the
operation to be performed.

Breaks down machine code into control
signals that tell various parts of the
processor what to do next.

2. Sequencing Logic:

Controls the order in which operations
are carried out by determining the next
Instruction to be executed (through the
Program Counter).

Manages the fetching, decoding, and
execution cycle of instructions.
Synchronizes the processor's operation,
often tied to the system clock.
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* 3. Control Logic Circuit:

* Contains the logic gates and
combinational circuits that generate
control signals based on the instruction
decoded.

These control signals manage the
iInternal data flow, timing, and operation of
functional units (ALU, registers, etc.).

* 4. Control Signal Generator: + ALU Control: ALUOp, ALUSFC

« Register Control: RegWrite , RegRead

* Generates the necessary control signals
that dictate the actions of other parts of
the CPU (ALU, memory interface, etc.).
These signals direct data movement, ALU T = —_—
operation, register writes, and memory . Pipeline Controk: Stall, Flish, Forwarda, Forvards
aCCesses. « CSR Control: CSRRead , CSRWrite

« Memory Control: MemRead , MemWrite , MemToReg
« Branch/Jump Control: Branch, Jump, PCSrc

« |Immediate Generation Control: ImmSrc



* 5. Control Instruction (PC):
Manages the Program Counter, which holds the
address of the next instruction to be executed.
Handles instruction sequencing, updating the PC after

each instruction or adjusting it for branch and jump lrticiicn
operations. W;T N

* 6. Status Flag Register: Tl
Contains flags that hold status information about the f | PCgen | r"_" s !
result of previous operations (e.g., Zero, Carry, lh_?pmmum“%m ,:“L.." ey AE e L., Résiier Fie
Overflow, Sign flags). ( w i) S
These flags help the Control Unit make decisions Ty “”l_Tm
regarding branching and conditional operations. s o

* 7. Timing and Clock Control: .
Coordinates the timing of operations across the CPU [ comiraorm

with the help of clock signals.

Ensures that all parts of the processor operate in Sync e«

and that each step of the instruction cycle is executed <= ><

at the correct time. foched instr <o >
><L

writebackistore done <€ XX




* 8. Branch and Jump Control:

* Manages control transfer instructions, such as

inst :25-011 rxi:';h y

26 FIETN
-

[31-28]

branches, jumps, and calls.

Works with the Branch Prediction Unit (in modern
processors) to optimize branching and minimize
delays caused by pipeline stalls.

* 9. Interrupt Control:
Handles interrupts by suspending the current
execution and transferring control to the appropriate
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* 10. Microprogram Control Storage (in
microprogrammed Cus):
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In microprogrammed control units, the control signals
are generated by executing a sequence of
microinstructions stored in a microprogram memory
(control memory).

Each instruction in the CPU is mapped to a set of
microinstructions that control specific low-level
operations.
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How do you define CPU performance?

Chapter 1 — Computer Abstractions and Technology — 33



Defining Performance

Which airplane has the best performance?
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Defining Performance

Response time:
How long it takes to do a task.
It is also called execution time.
It includes disk access, memory access, I/0 activities.

Throughput :
Total amount of work done in a given time.
e.g., tasks/transactions/... per hour.

We’ll focus on response time for now...

Chapter 1 — Computer Abstractions and Technology — 35



Relative Performance

Performance defined as:

Then to evaluate two computers A & B .

Can be phrased as “Processor X is n times faster than Processor Y”

Chapter 1 — Computer Abstractions and Technology — 36



Relative Performance

Example: Assume a program runs in
10s on Processor A.
15s on Processor B.
How much is A faster than B.

ExecutionTimeof B

_ 15 __

ExecutionTimeof A

So, A is 1.5 times faster than B

=J0 "

1.5

Chapter 1 — Computer Abstractions and Technology — 37



Execution Time

How do you measure execution time?

Elapsed time

Total response time, including all aspects
Processing, I/0, OS overhead, idle time

Determines system performance
CPU time
Time spent processing a given job
Discounts I/O time, other jobs’ shares

Different programs are affected differently by CPU and system
performance

Chapter 1 — Computer Abstractions and Technology — 38
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CPU Clockin;g#

Operation of digital hardware governed by a constant-rate clock

«— Clock period —

Clock (cycles)

Data transfer
and computation

Update state . . .

Clock frequency (rate): cycles per second
e.g., 4.0GHz = 4000MHz = 4.0x10°Hz

Clock period: duration of a clock cycle
e.g., 250ps = 0.25ns = 250%x10-*s

Chapter 1 — Computer Abstractions and Technology — 39



CPU Time

CPUTime =CPUCIlock CyclesxClock Cycle Time

__ CPUCIlockCycles
Clock Rate

Performance improved by
Reducing number of clock cycles
ncreasing clock rate

Hardware designer must often trade off clock rate against cycle
count

Chapter 1 — Computer Abstractions and Technology — 40



CPU Time

Computer A run a program in 10 seconds with a 2 GHz clock.
We have to design a computer B such that it can run the same
program within 6 seconds. Determine the clock rate for computer
B. Assume that due to increase in clock cycle rate , CPU design
of computer B is affected, and it requires 1.2 times as many
clock cycles as computer A for execution this program.

Chapter 1 — Computer Abstractions and Technology — 41



CPU Time Example

Computer A: 2GHz clock, 10s CPU time

Designing Computer B such that:
Aim for 6s CPU time
Can do faster clock, but causes 1.2 x clock cycles

How fast must Computer B clock be?

Clock Cycle 1.2 XClock Cycles
ClockRate, = CPUTimeSB - 6s -
B

Clock Cycles, =CPUTime , xXClock Rate ,

—10s x2GHz =20 x10°

9 9
Clock Rate, _1.2220>d0° _24>d0 =4GHz

6s 6s

Chapter 1 — Computer Abstractions and Technology — 42
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Instruction Performance

he computer had to execute the instructions to run the program.
he execution time must depend on the number of instructions in

program.

Chapter 1 — Computer Abstractions and Technology — 43



Instruction Count and CPI

Clock Cycles =Instruction Count xXCycles per Instruction
CPU Time =Instruction Count XCPI xClock Cycle Time

__Instruction Count <XCPI
B Clock Rate
Instruction Count for a program
Determined by program, ISA and compiler

Average cycles per instruction
Determined by CPU hardware

Chapter 1 — Computer Abstractions and Technology — 44
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CPI Exampléj

Computer A — Cycle Time = 250ps, CPI = 2.0
Computer B — Cycle Time = 500ps, CPI = 1.2
Same ISA

Which is faster? By how much?

Chapter 1 — Computer Abstractions and Technology — 45



CPI Example

Computer A: Cycle Time = 250ps, CPI = 2.0
Computer B: Cycle Time = 500ps, CPI =1.2
Same ISA

Which is faster, and by how much?

CPU TimeA =lnstruction Count ><CPIA xCycle TimeA

=1 <2.0 x250ps =I <500ps . Aisfaster... |

CPU Time B =Instruction Count ><(3PIB <Cycle Time B
=1 >1..2 xX500ps =I>x600ps
| <X600ps

- e ~bymemuen
| <X500ps

CPU Time
CPU Time

B
A

Chapter 1 — Computer Abstractions and Technology — 46



CPIl in More Detall

If different instruction classes take different numbers of
cycles

Clock Cycles =Y (CPJ xinstruction Count,)

=1

Weighted average CPI

lock I L Instruction Count,
Ccpl=——10CKCyCles  _ s+fcp) i _ i
Instruction Count <35 Instruction Count

— EY%

v

Chapter 1 — Computer Abstractions and Technology — 47
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CPI Example

Comparing Code Segments

A compiler designer is trying to decide between two code sequences for a
computer. The hardware designers have supplied the following facts:

CPl for each instruction class
1 2

3

CPl

For a particular high-level language statement, the compiler writer is
considering two code sequences that require the following instruction counts:

Instruction counts for each instruction class
Code seguance
b

[Eam— e e—— | — - — ~p— e —
2 1 2
2 4 1 1

Which code sequence executes the most instructions? Which will be faster?
What is the CPI for each sequence?

Chapter 1 — Computer Abstractions and Technology — 48



CPI Example

Alternative compiled code sequences using instructions in classes
A, B, C

Class A B C
CPI for class 1 2 3
IC in sequence 1 2 1 2
IC in sequence 2 4 1 1
Sequence 1: IC =5 Sequence 2: IC =6
Clock Cycles Clock Cycles
= 2x1 + 1x2 + 2%3 =4x]1 + 1x2 + 1x3
=10 =9
Avg. CPI =10/5=2.0 Avg. CPI=9/6 =1.5

Chapter 1 — Computer Abstractions and Technology — 49



Performance Summary

Instructions ><Clock cycles 9 Seconds
Program Instruction Clockcycle

CPUTIme =

Performance depends on
Algorithm: affects IC, possibly CPI
Programming language: affects IC, CPI
Compiler: affects IC, CPI
Instruction set architecture: affects IC, CPI

Chapter 1 — Computer Abstractions and Technology — 50



Power Trends

10,000 3600 2667 3300 3500 3500 3600 T+
2000 “E = m
F 1000 » g
= Clock Rate =n0p = +80 =
e D.
= 100 4 B6 T 60 ‘E’
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16 -
E 12.-5 -E 'Ij Fmr - dﬂ %
04+ = 291 p
o 10.1 ' + 20
3 .
: 0
WEy BWin Ba E — = 2 = = ] = =
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SE &8 OF5 = & = @4
oo = = m = s g
== e @ = =+ s =

In CMOS IC technology

Power =Capacitiveload xVoltage® xFrequency

Chapter 1 — Computer Abstractions and Technology — 51
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Topics

1. Basic Processor Architecture

2. Different Types of Processor Architectures
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Processors Types

* General Purpose Processor

* Digital Signal Processor

* Vector Processor

* Application specific Processor
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Flynn Taxonomy

* The matrix below defines the 4 possible classifications
according to Flynn

SIS D SIMD
Single Instruction, Single Data Single Instruction, Multiple Data
MISD MIMD

Multiple Instruction, Single Data | Multiple Instruction, Multiple Data



Types of Processor ISA

Reduced Instruction Set Computing (RISC) vs Complex Instruction Set Computing (CISC)

RISC

Instructions Per Cycle Small and fixed length Large and variable length

Instruction Complexity Simple and standardised Complex and versatile

Instruction Execution Single clock cycle Several clock cycles

RAM Usage Heavy use of RAM More efficient use of RAM

Increased memory usage to store
instructions

Memory

Memory efficient coding

Cost Cheaper than CISC Higher



RISC vs CISC

The RISC approach has several advantages over CISC:

 Simplifies Hardware Implementation: It simplifies the hardware
implementation of the processor, as fewer instructions need to be
decoded and executed. This can lead to faster execution times and
lower power consumption.

 Higher Instruction Level Parallelism: RISC processors typically

have a higher instruction-level parallelism, allowing them to execute
multiple instructions simultaneously, which can further improve
performance.

 Simplicity: The simplicity of the RISC instruction set makes it easier to
develop compilers and other software tools that can generate efficient
code for the processor.



RISC vs CISC

RISC is a processor design philosophy that emphasizes simplicity and
efficiency by wusing a small set of simple and general-purpose
instructions.

« The complex instruction set computing (CISC), employs a larger set
of more complex instructions that can perform multiple operations in a
single instruction.

* RISC architectures prioritize simplicity and execute one instruction per
clock cycle, resulting in streamlined designs and efficient decoding.

e CISC architectures, on the other hand, employ complex instructions
capable of performing multiple actions but may require several clock
cycles for execution. Both the CPUs aim to enhance CPU performance.
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Single-purpose processors

Digital circuit designed to execute exactly one program
. Controller Datapath
a.k.a. coprocessor, accelerator or peripheral ContoTTogic o

Features |
Contains only the components needed to execute a single State register
program
No program memory Data
Benefits ey
Fast

Low power

Small size

total

+




Embedded System Processor Architecture

Controller Datapath

* Reduced Instruction Set Computing (RISC): Control Registers

} Common architectures: ARM, RISC-V. 'Ogtcaf‘end i |

b Simple, efficient instruction set optimized for low power and high performance. register Custom
* System on Chip (SoC): 1 ee ALY

} Frequently used in embedded systems. A v et

} Integrates CPU, memory, peripherals, and other components on a single chip. Program memory
* Microcontroller Units (MCUSs): memory

} Often used in simpler embedded applications. Aosembly

} Includes integrated peripherals like ADCs, DACs, timers, and communication interfaces otal =
* Real-Time Capabilities: fori=lto...

} Designed for deterministic performance and real-time operating system (RTOS) support.

Low Power Consumption:
} Architectures and components optimized for minimal power usage.

Integrated Analog and Digital Peripherals:
} Features like GPIOs, serial communication interfaces, and specialized hardware accelerators.



Digital Signal Processor

Specialized Instruction Set:
Optimized for mathematical operations like multiply-accumulate (MAC).

Single-cycle multiply and MAC instructions.

Harvard Architecture:

Separate program and data memories to allow simultaneous access and
increase throughpuit.
Specialized Data Path:

Multiple data buses and address buses.

Dedicated hardware for specific tasks such as FFT (Fast Fourier
Transform) and filters.

High-Performance ALUs:
Multiple arithmetic logic units (ALUS) to perform parallel operations.
Support for fixed-point and floating-point arithmetic.
Circular and Bit-Reversed Addressing:
Efficiently manage circular buffers and data structures used in signal
processing.
Low-Latency Memory Access:
On-chip RAM with very low access latency.
Multi-level cache hierarchy optimized for predictable access patterns.
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General-Purpose Processor (GPP) Architecture

Complex Instruction Set Computing (CISC):

) Common architecture: x86.

! Rich instruction set with complex instructions.

I Often integrates many features directly in hardware.
Multi-Core and Hyper-Threading:

! Multiple cores for parallel processing.

! Hyper-threading for improved performance through parallel execution within
each core.

Large Cache Hierarchy:
' Multiple levels of cache (L1, L2, L3) to reduce latency and increase speed.
" Advanced Branch Prediction and Speculative Execution:

! Technigues to predict instruction paths and execute ahead to improve
performance.

Integrated Memory Management Unit (MMU):

' Manages virtual memory, enabling sophisticated operating system features.
High-Speed Interconnects:

" Fast communication between CPU, memory, and peripherals.

Graphics Processing Unit (GPU) Integration:

} Some GPPs include integrated GPUs for handling graphics processing tasks.
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RISC-V Processor Architecture

The RISC-V (pronounced as risk-five) architecture is an open-source instruction set
architecture (ISA) implementation of reduced instruction set computing RISC.

RISC-V is open-hardware architecture, its open source allows anyone to utilize the ISA.

History of RISC-V

* Prof. Krste Asanovi¢ and graduate students Yunsup Lee and Andrew Waterman started the RISC-V instruction
set in May 2010 as part of the Parallel Computing Laboratory (Par Lab) at UC Berkeley, of which Prof. David
Patterson was Director.

* No patents were filed related to RISC-V in any of these projects, as the RISC-V ISA itself does not represent any
new technology.

* RISC processor implementations—including some based on other open ISA standards— are widely available
from various vendors worldwide. .



https://parlab.eecs.berkeley.edu/
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Processor Architecture

B Instruction Set
ase Ins UP on Se Base and Extension of RISC-V

y e R 1 lrn sl Cat I _ki ;
RV32l Base Integer Instruction Set, 32-bit « Four base integer ISAs
= RV3ZE, RV32I, RVBdl, RV128I
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Name Descrniption - G = IMAFD, “General-purpose” ISA
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D Standard Extension for Double-Precision Floating-Point
Zicsr Control and Status Reqgister (CSR) Instructions :
Zifencer Instruction-Fetch Fence
e Shorthand for the IMAFD Zicsr_Zifencei base and extensions
C Standard Extension for Compressed Instructions




RISCV: Registers and Mapping

RISC-V uses a memory-mapped I/O architecture, which means
that input and output operations, memory access, and

peripheral access are all performed using the same load and
store instructions.

This unified approach simplifies the instruction set and
enhances the flexibility and efficiency of the architecture.
There are two basic types of instructions:

* |nstructions that either load memory into registers or store data from
registers into memory

* Instructions that perform arithmetical or logical operations between two
registers



Why RISC-V

Open Hardware: Allowing anyone to design,
Implement, and customize processors without

restrictions, fostering innovation and

collaboration within the community.
Royalty-Free: There are no licensing fees,
reducing costs for developers and

manufacturers.

Security: Rigorous security analysis and the
Implementation of custom security features,
enhancing trustworthiness.

ARM-12 (1986)

Mistakes of the Past
MIPS-32 [ 1986)

xR6-32 (1978)

Lessons bearned
RV IZL (2000 0)

ISA Pages

Words

Hours to read

Weeks 1o read

RISC-V
ARM-32
X86-32
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2,186,259
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Types of RISC-V Processor Architectures

RISC-V provides a detailed, open Instruction Set Architecture (ISA), which serves as a blueprint
for designing processors architecture.

Single-Cycle Architecture:

Multi-Cycle Architecture:

Pipelined Architecture:

Superscalar Architecture:

Out-of-Order Execution:

Very Long Instruction Word (VLIW) Architecture:
Vector Processing Architecture:

Custom Instruction Set Extensions:
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Defining/Designing RISC-V Processor Architecture

* Fetch: Retrieve the instruction from memory.

* Decode: Interpret the instruction and prepare operands.

* Execute: Perform the computation or operation (ALU
operations, branches).

* Memory: Access memory for load/store operations.
* Writeback: Write the result to the register file or memory.



5 Stages of Processor Arch

* Fetch Unit
Function: Retrieves instructions from memory.
PC Usage: The PC holds the address of the next instruction to be fetched. After fetching an

Instruction, the PC is typically incremented to point to the next instruction address.
Example: If the starting address of the first instruction is 0x8000000, the Fetch Unit will

fetch the instruction from address 0x8000000 initially.

* Decode Unit
Function: Interprets the fetched instruction to determine its operation and operands.

Memory Access: Decodes memory addresses and identifies whether they are for RAM,

ROM, or I/O devices. It also decodes which registers are involved.
ALU: Determines the type of ALU operation required (e.g., addition, subtraction) and

prepares operands for execution.
Example: Decodes an instruction to add two registers and prepare the operands for the

ALU.



Execute Unit

Function: Performs the arithmetic or logical operations as specified by the instruction.

ALU: Executes ALU operations (e.g., addition, subtraction) using the operands provided by the
Decode Unit.

Memory Access: Computes effective addresses for load/store operations.

Example: Executes an addition operation on two registers or calculates the address for a load
instruction.

Memory Unit

Function: Accesses memory or I/O based on the address computed in the Execute stage.

Memory Access: Performs read/write operations to RAM or memory-mapped I/O devices based
on the effective address.

Example: Reads data from address 0x00002000 in RAM or writes data to a memory-mapped
/O device at 0x20000000.

Write Back Unit

Function: Writes the result of computations or memory accesses back to the register file or
memory.

Memory Access: Updates the register file with results from the Memory Unit or ALU operations.

Example: Writes the result of an addition operation back to a register or stores data retrieved
from memory to a register.



Pipe-lined VS Single Cycle Processor Architecture

1. Fetch instruction from memory.
2. Read registers and decode the instruction.
3. Execute the operation or calculate an address.
4. Access an operand in data memory (if necessary).
5. Write the result into a register (if necessary).
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5 Stage Pipelined Processor Architecture
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Instruction Set Architecture is like the language
that a computer's hardware understands. |

ISA is a set of instructions that tells the computer's processor what to do. These
Instructions are basic operations like adding two numbers, moving data from one
place to another, or jumping to a different part of a program.

The ISA defines the "rules" of computer architecture or the "language" that the CPU
uses to execute instructions.

It determines what the processor can do. If a processor supports a particular ISA, it
can execute any program written in that ISA.

It also ensures that different programs can run on different computers as long as
those computers understand the same ISA.

It's like setting the vocabulary and grammar for a conversation between
software and hardware.

It is Is the language that a computer's hardware understands. |



Commercial ISA

Commercial ISAs are proprietary.

Commercial ISAs are only popular in certain market domains.
Commercial ISAs come and go.

Popular commercial ISAs are complex.

Commercial ISAs alone are not enough to bring up applications.

Popular commercial ISAs were not designed for extensibility.
A modified commercial ISAis a new ISA.



OpenRISC

o OpenRISC has condition codes and branch delay slots, which complicate higher performance
implementations.

e OpenRISC uses a fized 32-bit encoding and 16-bit immediates, which precludes a denser
instruction encoding and limils space for later expansion of the ISA.

e OpenRISC does not support the 2008 revision to the IEEE 754 floating-point standard.
e The OpenRISC 64-bit design had not been completed when we began.



RISCV Instructions Set

* RISC-V (Reduced Instruction Set Computing V) is an open standard instruction set
architecture (ISA) that is designed to be scalable and extensible. The number of
instructions in RISC-V can vary based on the specific subset or extensions of the ISA
being used. Here's a breakdown of the primary RISC-V instruction sets and their
respective instruction counts:

Base ISA:

b RV32I (32-bit Integer): The base integer instruction set for 32-bit processors includes
approximately 47 instructions.

b RV64I (64-bit Integer): The base integer instruction set for 64-bit processors extends RV32l and
includes a few additional instructions specific to 64 bit operations.



Instruction Extensions

* Standard Extensions:
> M (Multiply/Divide): Adds multiply and divide instructions.
> A (Atomic): Adds atomic instructions for synchronization.
> F (Single-Precision Floating-Point): Adds single-precision floating-point instructions.
> D (Double-Precision Floating-Point): Adds double-precision floating-point instructions.
> Q (Quad-Precision Floating-Point): Adds quad-precision floating-point instructions.
> C (Compressed): Adds compressed instructions to reduce code size.

* Other Extensions:
> B (Bit-Manipulation): Adds instructions for bit manipulation.
> V (Vector): Adds vector processing instructions.
> P (Packed-SIMD): Adds packed SIMD instructions.

» 7 (Various small extensions): These include specific sets of instructions like Zifencei for
instruction-fence or Zicsr for control and status registers.



Basic RISCV Processor

°* The 47 standard instructions in RV32l include:

>
>
>
>
>
>
>
>
>

Arithmetic Instructions: ADD, SUB, MUL, etc.
Logical Instructions: AND, OR, XOR, etc.
Immediate Instructions: ADDI, ORI, XORI, etc.
Load Instructions: LB, LH, LW, etc.

Store Instructions: SB, SH, SW, etc.

Branch Instructions: BEQ, BNE, BLT, etc.
Jumps: JAL, JALR

System Instructions: ECALL, EBREAK

Other Instructions: NOP, AUIPC, LUI, etc.
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Types of RISCV ISA

RISC-V Instruction Set:

The RISC-V instruction set is a collection of instructions that define the operations a RISC-V
processor can perform.

These instructions are designed to be simple, efficient, and easily extensible, allowing for a high
degree of customization and optimization.

Instruction Types:

R-Type (Register Type): Used for register-register arithmetic and logical operations.

I- Type (Instruction Type): Used for immediate arithmetic, load instructions, and register-immediate operations.
S-Type (Store Type): Used for store instructions.

U-Type (Upper Immediate Type) : Used for upper immediate instructions

B-Type (Branch Type) : Used for conditional branch instructions.

J-Type (Jump Type) : Used for jump instructions like JAL.

F-Type (Floating-Point) Instructions

A-Type (Atomic) Instructions

DV 00 N oUW

C-Type (Compressed) Instructions



Registers

* Total Registers: 32 general-purpose registers, additional special-purpose
and control registers.

} General Purpose Registers: x0 to x31, with specific roles for some registers.

} Special Purpose Registers: Includes PC, SP, GP, TP.
* Program Counter (PC): Holds the address of the current instruction being executed.

* Instruction Register (IR): Holds the current instruction being executed (in some
implementations).

Stack Pointer (SP): Points to the top of the stack.
Global Pointer (GP): Points to the global data region.

* Thread Pointer (TP): Points to the thread-local storage.

} Control and Status Registers: Includes MSR, MEPC, MCAUSE, MSTATUS, MTVEC.
* Machine Status Register (MSR): Controls machine-level status and configuration.

* Machine Exception Program Counter (MEPC): Holds the address of the instruction where an
exception occurred.

* Machine Cause Register (MCAUSE): Contains information about the cause of the last
exception.

* Machine Status Register (MSTATUS): Holds the status of the machine, including interrupts and
mode.

* Machine Trap Vector Base Address Register (MTVEC): Base address for the trap vector.
} Floating-Point Registers: If included, fO to f31 for floating-point operations.

Register Symbolic
name

namea

K0

%1

X2

X3

xd

x5
Kb/
X8

X3
%1011
x12-17
X18-27
x28-31

Zaro

ra

s0/fp
51
al-1
az-7
5=11
13-6

Description

32 integer registers
Always zero
Return address
Stack pointer
Global pointer
Thread pointer
Temporary / alternate relum address
Temporary
Saved register / frame pointer
Saved registar
Function argument / return value
Function argument
Saved register

Temporary

Saved by

Caler

Callea

Caller
Caller
Calles
Callea
Caller
Caller
Callee

Caller



RISC-V Instruction Format

31 27 26 25 24 20 19 4 12 11 7
funct?7 rs2 rsl funct3 rd opcode
imm/[11:0] rsl funct3 rd opcode
imm/[11:5] 1s2 rsl funct3 imm/[4:0] opcode
imm[12[10:5] rs2 rsl funct3 | imm[4:1]11] opcode
imm|[31:12] rd opcode
imm[20(10:1|11|19:12] rd opcode

https://www.cs.sfu.ca/~ashriram/Courses/CS295/assets/notebooks/RISCV/RISCV_CARD.pdf



RISC-V Instructions and Formats

RV32I Base Integer Instructions

Inst Name FMT | Opcode | functd | funct? Description (C) Note

add ADD R @1iee11 | eéxe @x 08 rd = rsl + rs2

sub SUB R e1iee11 | exe Bx28 rd = rsl - rs2

xor XOR R 2110811 | Ox4 @x0e rd = rs1 " rs2

or OR R 2110011 | @x6 @x @9 rd = rs1 | rs2

and AND R 2112011 | ox7 @x0e rd = rs1 & rs2

sll Shift Left Logical R 8110011 | ox1 @xee rd = rsl << rs2

srl Shift Right Logical R 2118811 | @x5 0x 28 rd = rs1 >> rs2

sra Shift Right Arith* R @11ee11 | x5 @x20 rd = rs1 >> rs2 msb-extends
slt Set Less Than R 8110011 | @x2 @xea rd = (rs1 < rs2)?71:@

sltu Set Less Than (U) R 8110011 | @x3 @x 29 rd = (rs! < rs2)?1:9 zero-extends
addi ADD Immediate I | eeieeil | exe rd = rs1 + imm

xori XOR Immediate I 2010011 | Ox4 rd = rs1 " imm

ori OR Immediate I ea10011 | @x6 rd = rs1 | imm

andi AND Immediate I 9810011 | Ox7 rd = rs1 & imm

slli Shift Left Logical Imm | gal1ee11 | exi imm[5:11]=0x08 | rd = rs1 << imm[@:4]

srli Shift Right Logical Imm I 8210011 | @x5 imm[5:11]=0x@0 | rd = rs1 >> imm[0:4]

srai Shift Right Arith Imm I 2210011 | @x5 imm[5:11]=0x20 | rd = rs1 >> imm[0:4] msb-extends
slti Set Less Than Imm I 2012011 | @x2 rd = (rs1 < imm)?1:0

sltiu Set Less Than Imm (U) I 8018011 | @x3 rd = (rsl < imm)?1:0 zero-extends




sb Store Byte S 2100011 | 9xe Mlrs1+imm][@:7] = rs2[@:7]

sh Store Half S 2100011 | éx1 Mlrs1+imm][@:15] = rs2[@:15]

SW Store Word S 2100011 | ex2 Mrs1+imm][@:31] = rs2[@:31]

beqg Branch == B 1100011 | @x@ if(rsl == rs2) PC += imm

bne Branch != B 1186011 | @x1 if(rsl != rs2) PC += imm

blt Branch < B | 1100011 | ox4 if(rs1 < rs2) PC += imm

bge Branch > B 1108011 | @x5 if(rsl >= rs2) PC += imm

bltu Branch < (U) B 1100811 | @x6 if(rsl < rs2) PC += imm zero-extends
bgeu Branch > (U) B 1100011 | @x7 if(rsl >= rs2) PC += imm zero-extends
jal Jump And Link J 1181111 rd = PC+4; PC += imm

jalr Jump And Link Reg I 1100111 | oxe@ rd = PC+4; PC = rs1 + imm

lui Load Upper Imm U eneim rd = imm << 12

auipc | Add Upper Imm to PC U ea1e1 rd = PC + (imm << 12)

ecall Environment Call | 1116011 | @xoé imm=@x@ Transfer control to 05

ebreak | Environment Break | 111@811 | exe imm=@x1 Transfer control to debugger




RV32M Multiply Extension

Inst Name FMT | Opcode | functd | funct? | Description (C)
mul MUL R 81192011 | oxeé Bx@ rd = (rs1 = rs2){31:0]
mulh MUL High R g118e11 | ex1 @xa1 rd = (rsl * rs23[63:32]
mulsu | MUL High (5) (U) R arieal ax2 @xd rd = {rs1 * rs2)[63:32]
mulu MUL High (U) R a1ieai Bx3 Axa rd = (rs1 % rs2)[63:32]
div DIV R 2118811 | éxd Bxa rd = rsl f rs?
divu DIV (U) R 2118811 | exhs @x@ rd = rs1 / rs2
rem Remainder R @11ee11 | ox6 Ax@1 rd = rs1 % rs2
remu Remainder (U) R @11ee11 | ox7 @xa1 rd = rs1 % rs2
RV32A Atomic Extension
31 27 26 25 24 20 19 15 14 12 11 76 0
functb aq rl rs2 rsl funct3 rd opcode
5 1 1 5 5 3 5 7
Inst MName FMT | Opcode | funct3d | functb | Description (C)
1r.w Load Reserved R @1e1111 | ox2 Bx@2 rd = M[rs1], reserve M[rsi]
SC.W Store Conditional R @191111 | ax2 Bxa3 if (reserved) { M[rs1] = rs2; rd = 8 }
else { rd =11}
amoswap.w | Atomic Swap R 8181111 | ox2 Bx@1 rd = M[rs1]: swap(rd, rs2): M[rs1] = rd
amoadd . w Atomic ADD R 8181111 | ox2 Bxaa rd = M[rs1] + rs2;: M[rs1] = rd
amoand . w Atomic AND R p1e1111 | ox2 Bx@C rd = M[rs1] & rs2; M[rs1] = rd
amoor.w Atomic OR R 2181111 | ox2 Bx@A rd = M[rs1] | rs2; M[rs1] = rd
amoxor.w Aromix XOR R 8181111 | ax2 Bx04 rd = M[rs1] * rs2; M[rsl] = rd
amomax . w Aromic MAX R 8181111 | ax2 Bx14 rd = max(M[rs1], rs2); M[rs1] = rd
amomin.w Aromic MIN R 8181111 | ox2 Bx1@ rd = min{M[rs1], rs2); M[rs1] = rd




RISC-V Instruction Format: 1: R-Type

31 25 24 20 19 15 14 12 1 7 6 0
func7 rs2 rsi func3 rd opcode
S T — —
opcode: R1,A B Basic operation of the instruction, and this abbreviation is its traditional name.
oprand: R2,C,D The register destination operand. It gets the result of the operation
funct3: X, R1,R2 An additional opcode field.
rst: The first register source operand.
rs2: The second register source operand.
func7 An additional opcode field.
Assembly Field Values Machine Code
functy rs2 131 functd rd op funct? rs2 rsl1 funct3 rd op
:E.‘.;': :fﬁ,:?a :;._. 0 ;D 18 l:} 18 _51 . I_I:I{:-I:I-I:IEﬂ 51_n-1-nn_'.m|:|1:.1_; ::an_n_' m_n_m_ti:_nfli (0x0D1498933)
iy - Lo | R - 7 & 0 5 51 | D100 ﬂrtl-ﬂﬂ,n-'l 1100110, 000, | 00101 0110011 (0x407302B3)

adb =%, =b w7 ] B Lo ] i L 3 | ] ! :
¥ bl Shits 5 bin 3 bis > bhip ¥ bin T bits S bty 5 big 3 biis = beis T bits



Immediate: I-Type

31 20 19 15 14 12 11 /7 © 0
imm[11:0] rsl func3 fo opcode
m No. O f bits Function
opcode: R1,A,B Basic operation of the instruction, and this abbreviation is its traditional name.
rd: R2,C, D The register destination operand. It gets the result of the operation
funct3: X, R1, R2 An additional opcode field.
rsl: The first register source operand.
imm The second register source operand.
Assembly Field Values Machine Code
My 5.0 rs1 fumetd rd op P g ral funct3 rd op
addi s0, s1l, 12 | T 1
addi =8, x9. 1% 12 9 a 8 18 0000 0000 1100 (01001 000 | 01000 0010011 | (Ow0OC48413)
AT L i -14 6 | o | w]| 19 111111110010 [00110] 000 | 10010| 0010011 | (0xFF230513)
o gL 1o £ || 2| 7| 3 1111 1111 1010 10011 010 |00111| 0000011 | (OxFFAIA3E3)
-'{-E :;r gﬁ:;fﬂ 27 | 1 ] 3 Q000 00T 1011 mr 0 El1ﬂﬂ1; Q00 0O11 | (Ox01BO1483)
b =4, OxiF(sd) Ox1F 20 | o | 20 3 0000 0001 1111 |10900| 000 | 10100 000 0011 | (OxD1FAGAOZ)

| FEl
e 2l Ox1F (x20) 12 bis Shis  Sbdt  Sbas ¥ bals 12 bt Shat  Ibds  Sbis ¥ bis



Store: S-Type

31 25 24 20 19 15 14 12 11 7 6 0
imm[11:5] imm[4:0] opcode
I T A S
opcode: R1,A, B Basic operation of the instruction, and this abbreviation is its traditional name.
rd: R2,C, D The register destination operand. It gets the result of the operation
imm[4:0]: X, R1, R2 An additional opcode field.
rsl: The first register source operand.
rs2: The second register source operand.
imm[11:5] An additional opcode field.

#x1 based address
SW x2, 0(x1) # Memory[x1 + 0] = x2



Branch: B-Type

31 25 24 20 19 15 14 12 11 7 © 0
imm[11:5] imm[4:0] opcode
[ eone | mm
opcode: R1, A B Basic operation of the instruction, and this abbreviation is its traditional name.
rd: R2,C, D The register destination operand. It gets the result of the operation
imm[4:0]: X, R1, R2 An additional opcode field.
rsl: The first register source operand.
rs2: The second register source operand.
imm[11:5] An additional opcode field.

BEQ x1, x2, equal # If x1 == x2, branch to label 'equal’



Jump: J-Type

* Unconditional jump with an optional link to store the return
address.

3 opcode (7 bits): Operation code that specifies the jump
Instruction (e.g., JAL).

b rd (5 bits): Destination register for the return address.

b immediate (20 bits): Jump target offset, which is used to
calculate the jJump address relative to the current program
counter (PC).



Topics

1. Basic Processor Architecture

2. Different Types of Processor Architectures
3. RISC-V Processor Architecture

4. RISC-V Instruction Set Architecture

5. Programming RISC-V using assembly language




C program
foo.c
Compiller
F Assembly program
foo.s
W

Object (machine language module) Library (machine language module)
foo.o lib.o

w/

ercutahle (machine language pmgmm?/l

a.out

W




e ————N, —

RISCV GCC Assembler

_ start:

ld s3 0x001121
Ld rs2 0x0022233
add rd, rs1, rs2
St rd 0x0000001



Assembly or C/C++

* Write Efficient Code
* Secure Application

* Multi-Threaded and Complex Program to run multiple devices (OS)
* Real-Time Applications for Real world Problems



Programming RISC-V

* Problem

* Write it in your own words

* Make Pseudo Code

* Create Control and Data-flow Graph
* Program (C/C++, ASM)

* Debug

* Profile

* Optimize/Fine Tune

* Execute

* Test

Flowchar

f=g+h




Hazards

* Data Hazards: Instructions are waiting for
data from other instructions. H NS

* Control Hazards: Changes in instruction flow
cause delays. Y Y l

* Structural Hazards: Limited hardware
resources cause delays.




Il example.c * The compiler generates an
int global_var = 10; object file in ELF format. This
'”t,mf’l"”o |{ s object file contains machine
ntlocal_var = S, code, data, and metadata,
Int result = global _var + —ed into diff A
ocal var organized into differen
return result: sections like .text
} (code), .data (initialized data),

and .bss (uninitialized data).

riscv32-unknown-elf-gcc example.o -0 example



* Instruction Section: Contains the compiled = * MEMORY

machine code instructions (text section). "1
ROM (rx) : ORIGIN = 0x08000000, LENGTH =512K
* Data Section: Contains initialized data + RAM (nwx) : ORIGIN = 0x20000000, LENGTH = 64K
(data section). .}
* The linker combines the code and data
sections, resolves symbols, and sets up " SECTIONS
memory addresses. "
text: {
* The linker script defines how different . *(.text)
sections are mapped into the memory of *  }>ROM
the microcontroller. ¥
* It specifies memory regions and assigns 'dit(a d:a{ta)
addresses to different sections of the code 1> é AM

and data. .



* Next step involves using a
programmer or debugger tool to
flash the firmware into the RISCV

System.

b Instruction Memory: The code from
the .text section is loaded into the
system instruction memory.

} Data Memory: The initialized data
from the .data section is loaded into
the system data memory.



Linker Script: Program and Data Memory Allocation

The high addresses are the top of the figure and the low addresses
are the bottom.

The stack pointer (sp) starts at BFFF FFFO hex and grows down
toward the Static data. The text (program code) starts at 0001 0000hex
and includes the statically-linked libraries.

The Static data starts immediately above the text region; in this
example, we assume that address is 1000 0000hex . Dynamic data,
allocated in C by malloc(), is just above the Static data. Called the
heap, it grows upward toward the stack. It includes the dynamically-

linked libraries.

sp = bfff ffflpay

1000 000040y

pc = 0001 0000pex

0

Stack

T

Dynamic data

Static data

Text

Reserved




Testing and Executing the Code

RIPES

https://ripes.me/
https://github.com/mortbopet/Ripes/releases/download/v2.2.6/Ripes-v2.2.6-win-x86_64.zip

Next:

RISCV Micro Controller

RISCV Simulator and Emulators
RISCV Single Board Computer


https://ripes.me/
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