
Python for Engineers
Tassadaq Hussain

Associate Professor Riphah International University

Collaborations:
Microsoft Research and Barcelona Supercomputing Center

Barcelona, Spain
European Network on High Performance and Embedded Architecture

and Compilation
UCERD Pvt Ltd Islamabad

Agenda

● Importance of Programming Languages
● Python Language
● Python for Engineers

– Interfacing with external world (etc)
– RasppberyPi
– Computer Vision

● Machine Learning

Three-chip color Camera

(a) Bayer (b) Filter patterns used in single chip cameras.

Color Pixel = RedRed (8bit) + GreenGreen (8bit) + BlueBlue (8bit)

Gray scale intensityGray scale intensity = 0.299 R + 0.587 G + 0.114 B

Pixel >> Image >> Video

Image Resolution

 (a) 256 × 256; (b) 128 × 128; (c) 64 × 64, (d)32 × 32.

Pixel Depth

 Image 256x256 array pixels: (a) 32 bit (b) 16 (c) 8 (d) 4

Performance Measures

 3 Mega Pixel Image = 3145720 pixels
 A 32 bit Processor = 3.14 million operation / sec

 Pixels = 2048 x 1536 x 24 bits/pixel
 Local Memory = 9.4 Mega Byte for single Image
 Video Processing = 3.14 x 10 x 30 (fps)

 = 94.2 x 10

Processor / System Dhrystone MIPS / MIPS

Nios II 190 MIPS at 165 MHz

ARM Cortex A7 2,850 MIPS at 1.5 GHz

ARM Cortex-A9 (Dual core) 7,500 MIPS at 1.5 GHz

Raspberry Pi 2Raspberry Pi 2 1186 MIPS per core at 1.0 GHz1186 MIPS per core at 1.0 GHz

Nvidia Tegra 3 (Quad core Cortex-A9) 13,800 MIPS at 1.5 GHz

Intel Core 2 Extreme QX6700 (Quad core) 49,161 MIPS at 2.66 GHz

Intel Core i7 920 (Quad core) 82,300 MIPS at 2.93 GHz

Uses

3D Vision

Health-care

Security

Communication

Information

Automobile

Computation Required for Simple
Thresholding
Read Image Pixel // I/O Operation

if(pix_value>value) // Branch Operation

pix_value=value // Assignment Operation

A 3 Mega Pix Image requires
2048 x 1536 Input/Output Operations

2048 x 1536 Branch Operations

2048 x 1536 Assignment Operations

Total = 2048 x 1536 x 3 = 9 Million Operations

Software Platform of Digital Camera

Image Processing Problems

Graphics System

15

Image Processing: OpenCV

OpenCV (Open Source Computer Vision Library) is
released under a BSD license and hence it’s free for
both academic and commercial use. It has C++, C,
Python and Java interfaces and supports Windows,
Linux, Mac OS, iOS and Android. OpenCV was
designed for computational efficiency and with a
strong focus on real-time applications. Written in
optimized C/C++, the library can take advantage of
multi-core processing. Enabled with OpenCL, it can
take advantage of the hardware acceleration of the
underlying heterogeneous compute platform.

Source: https://opencv.org/

16

Read and Display

import cv2

import numpy as np

from matplotlib import pyplot as plt

#input handler

img = cv2.imread('./images/L1.jpg')

plt.imshow(img)

plt.show()

OpenCV

IntelIntel®® OPEN SOURCE COMPUTER VISION OPEN SOURCE COMPUTER VISION
LIBRARYLIBRARY

GoalsGoals

Develop a universal toolbox for
research and development in the
field of Computer Vision

OpenCV FunctionalityOpenCV Functionality
(more than 350 algorithms)(more than 350 algorithms)

 Basic structures and operations
 Image Analysis
 Structural Analysis
 Object Recognition
 Motion Analysis and Object Tracking
 3D Reconstruction

Basic Structures and OperationsBasic Structures and Operations

 Image and Video Data Structures
Mat image;

Image = imread (“path”);

 Multidimensional array operations
include operations on images, matrices and histograms.

equalizeHist(src, dst);

 Dynamic structures operations
concern all vector data storages.

 Drawing primitives
allows not only to draw primitives but to use the algorithms for pixel access

 Utility functions
 in particular, contain fast implementations of useful math functions.

Image Read/Write
 Import cv2 as cv

gray_img = cv2.imread('images/input.jpg', cv2.IMREAD_GRAYSCALE)

cv2.imshow('Grayscale', gray_img)

cv2.waitKey()

cv2.imwrite('images/output.jpg', gray_img)

gray_img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)

yuv_img = cv2.cvtColor(img, cv2.COLOR_BGR2YUV)

Image Analysis

 Thresholds
threshold(src_gray, dst, threshold_value, max_BINARY_value, threshold_type);

 Statistics
 Pyramids
 Morphology
 Erosion , dilation etc

 Distance transform
 Feature detection

StatisticsStatistics

 min, max, mean value, standard deviation over
the image

 Norms C, L1, L2
 Multidimensional histograms
 Spatial moments up to order 3 (central,

normalized, Hu)

PyramidsPyramids

An image pyramid is a collection of images - all
arising from a single original image - that are
successively downsampled until some desired
stopping point is reached.

PyrUp()

pyrdown()

Gaussian pyramid:

Laplacian pyramid:

Image PyramidsImage Pyramids

 Gaussian and Laplacian

Pyramid-based color Pyramid-based color
segmentationsegmentation

On still picturesOn still pictures And on moviesAnd on movies

Multidimensional HistogramsMultidimensional Histograms

 Histogram operations : calculation,
normalization, comparison, back project

 Histograms types:
 Dense histograms
 Signatures (balanced tree)

Morphological OperationsMorphological Operations

 Two basic morphology operations using
structuring element:
 erosion
 dilation

 More complex morphology operations:
 opening
 closing
 morphological gradient
 top hat
 black hat

Morphological Operations ExamplesMorphological Operations Examples
 Morphology - applying Min-Max. Filters and its combinations

Opening IoB= (IB)BDilatation IBErosion IBImage I

Closing I•B= (IB)B TopHat(I)= I - (IB) BlackHat(I)= (IB) - IGrad(I)= (IB)-(IB)

Distance TransformDistance Transform

The distance transform operator generally takes binary images as inputs. In this
operation, the gray level intensities of the points inside the foreground regions are
changed to distance their respective distances from the closest 0 value (boundary).
distanceTransform()
 Calculate the distance for all non-feature points to the closest feature point
 Two-pass algorithm, 3x3 and 5x5 masks, various metrics predefined

Flood FillingFlood Filling

 Simple
 Gradient

cv2.floodFill(img, mask, (0,0), 255);

Feature DetectionFeature Detection

 Fixed filters (Sobel operator, Laplacian);
 Optimal filter kernels with floating point

coefficients (first, second derivatives, Laplacian)
 Special feature detection (corners)
 Canny operator
 Hough transform (find lines and line segments)
 Gradient runs

Convolution Convolution
Convolution is a fundamental operation in image processing. It
basically applies a mathematical operator to each pixel, and change
its value in some way.

To apply this mathematical operator, convolution uses another matrix
called a kernel. The kernel is usually much smaller in size than the
input image. For each pixel in the image, we take the kernel and place
it on top so that the center of the kernel coincides with the pixel under
consideration.

We then multiply each value in the kernel matrix with the
corresponding values in the image, and then sum it up. This is the
new value that will be applied to this position in the output image.

import cv2

import numpy as np

img = cv2.imread('images/input.jpg')

rows, cols = img.shape[:2]

kernel_identity = np.array([[0,0,0], [0,1,0], [0,0,0]])

kernel_3x3 = np.ones((3,3), np.float32) / 9.0 # Divide by 9 to normalize the kernel

kernel_5x5 = np.ones((5,5), np.float32) / 25.0 # Divide by 25 to normalize the kernel

cv2.imshow('Original', img)

value -1 is to maintain source image depth

output = cv2.filter2D(img, -1, kernel_identity)

cv2.imshow('Identity filter', output)

output = cv2.filter2D(img, -1, kernel_3x3)

cv2.imshow('3x3 filter', output)

output = cv2.filter2D(img, -1, kernel_5x5)

cv2.imshow('5x5 filter', output)

cv2.waitKey(0)

import cv2

from matplotlib import pyplot as plt

import numpy as np

img = cv2.imread('images/input.jpg')

cv2.imshow('Original', img)

size = 15

generating the kernel

kernel_motion_blur = np.zeros((size, size))

kernel_motion_blur[int((size-1)/2), :] = np.ones(size)

kernel_motion_blur = kernel_motion_blur / size

applying the kernel to the input image

output = cv2.filter2D(img, -1, kernel_motion_blur)

cv2.imshow('Motion Blur', output)

cv2.waitKey(0)

Sharpening Images

generating the kernels

kernel_sharpen_1 = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])

kernel_sharpen_2 = np.array([[1,1,1], [1,-7,1], [1,1,1]])

kernel_sharpen_3 = np.array([[-1,-1,-1,-1,-1], [-1,2,2,2,-1], [-1,2,8,2,-1], [-1,2,2,2,-1], [-1,-1,-1,-1,-1]]) / 8.0

The process of edge detection involves detecting sharp edges in
the image, and producing a binary image as the output.
Typically, we draw white lines on a black background to
indicate those edges.

We can think of edge detection as a high pass filtering
operation. A high pass filter allows high-frequency content to
pass through and blocks the low-frequency content. As we
discussed earlier, edges are high-frequency content. In edge
detection, we want to retain these edges and discard
everything else. Hence, we should build a kernel that is the
equivalent of a high pass filter.

Canny Edge DetectorCanny Edge Detector

import cv2
import numpy as np
img = cv2.imread('images/input_shapes.png',
cv2.IMREAD_GRAYSCALE)
rows, cols = img.shape # It is used depth of
cv2.CV_64F.
sobel_horizontal = cv2.Sobel(img, cv2.CV_64F, 1, 0,
ksize=5)
Kernel size can be: 1,3,5 or 7.
sobel_vertical = cv2.Sobel(img, cv2.CV_64F, 0, 1,
ksize=5)
cv2.imshow('Original', img)
cv2.imshow('Sobel horizontal', sobel_horizontal)
cv2.imshow('Sobel vertical', sobel_vertical)
cv2.waitKey(0)

40

Machine Learning

Example

41

Google Colab

Do not know how to install and set up the Python running
environment;

Do not know how to find the solutions effectively when facing the
problems;

Do not know how to collaborate with others when trying to finish
the group tasks；

Do not know how to handle version control, which may lead the
code to chaotic.

Google Colab can help you with all of those things.

https://colab.research.google.com

42

43

Colab hardware support

By default, these cloud computing
hardwares are not enabled. You need to
choose “runtime” in the menu bar, and
then “Change runtime type”.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

