
DL: TimeSeries and RNN

Tassadaq Hussain
Professor Namal University

Director Centre for AI and Big Data

Collaborations:
Barcelona Supercomputing Center Barcelona, Spain

European Network on High Performance and Embedded Architecture and Compilation
Pakistan Supercomputing Center

 Understanding recurrent neural networks
(RNNs)
 Applying RNNs to a temperature-forecasting
example
 Advanced RNN usage patterns

Temperature Sensor Data

What is RNN
● A recurrent neural network is a neural network that is specialized for

processing a sequence of data x(t)= x(1), . . . , x(τ) with the time step
index T ranging from 1 to T.

● Applications such as: speech and language, NLP problem
● RNNs are called recurrent because they perform the same task for every

element of a sequence, with the output being depended on the previous
computations.

● Another way to think about RNNs is that they have a “memory” which
captures information about what has been calculated so far.

● In summary, an RNN is a for loop that reuses quantities
computed during the previous iteration of the loop, nothing
more.

● There are many different RNNs fitting this definition that you
can be build

num_features = 14

inputs = keras.Input(shape=(None, num_features))

outputs = layers.SimpleRNN(16)(inputs)
● Stacking More Layers

inputs = keras.Input(shape=(steps, num_features))

x = layers.SimpleRNN(16, return_sequences=True)(inputs)

x = layers.SimpleRNN(16, return_sequences=True)(x)

outputs = layers.SimpleRNN(16)(x)

● Input: x(t) is taken as the input to the network at time step t. For example,
x1,could be a one-hot vector corresponding to a word of a sentence.

● Hidden state: h(t) represents a hidden state at time t and acts as
“memory” of the network. h(t) is calculated based on the current input and
the previous time step’s hidden state: h(t) = f(U x(t) + W h(t−1)). The
function f is taken to be a non-linear transformation such as tanh, ReLU.

● Weights: The RNN has input to hidden connections parameterized by a
weight matrix U, hidden-to-hidden recurrent connections parameterized
by a weight matrix W, and hidden-to-output connections parameterized by
a weight matrix V and all these weights (U,V,W) are shared across time.

● Output: o(t) illustrates the output of the network. In the figure I just put an
arrow after o(t) which is also often subjected to non-linearity, especially
when the network contains further layers downstream.

● Forward Pass
●

● The figure does not specify the choice of activation function for the hidden units. Before we proceed we make few assumptions: 1) we
assume the hyperbolic tangent activation function for hidden layer. 2) We assume that the output is discrete, as if the RNN is used to predict
words or characters. A natural way to represent discrete variables is to regard the output o as giving the un-normalized log probabilities of
each possible value of the discrete variable. We can then apply the softmax operation as a post-processing step to obtain a vector ŷof
normalized probabilities over the output.

●

● The RNN forward pass can thus be represented by below set of equations.
●

● This is an example of a recurrent network that maps an input sequence to an output sequence of the same length. The total loss for a given
sequence of x values paired with a sequence of y values would then be just the sum of the losses over all the time steps. We assume that
the outputs o(t)are used as the argument to the softmax function to obtain the vector ŷ of probabilities over the output. We also assume that
the loss L is the negative log-likelihood of the true target y(t)given the input so far.

● Backward Pass
●

● The gradient computation involves performing a forward propagation pass moving left to right through the graph shown above followed by a
backward propagation pass moving right to left through the graph. The runtime is O(τ) and cannot be reduced by parallelization because the
forward propagation graph is inherently sequential; each time step may be computed only after the previous one. States computed in the
forward pass must be stored until they are reused during the backward pass, so the memory cost is also O(τ). The back-propagation
algorithm applied to the unrolled graph with O(τ) cost is called back-propagation through time (BPTT). Because the parameters are shared by
all time steps in the network, the gradient at each output depends not only on the calculations of the current time step, but also the previous
time steps.

●

● Computing Gradients
● Given our loss function L, we need to calculate the gradients for our three weight matrices U, V,

W, and bias terms b, c and update them with a learning rate α. Similar to normal back-
propagation, the gradient gives us a sense of how the loss is changing with respect to each
weight parameter. We update the weights W to minimize loss with the following equation:

● The same is to be done for the other weights U, V, b, c as well.

● Let us now compute the gradients by BPTT for the RNN equations above. The nodes of our
computational graph include the parameters U, V, W, b and c as well as the sequence of nodes
indexed by t for x (t), h(t), o(t) and L(t). For each node n we need to compute the gradient nL ∇
recursively, based on the gradient computed at nodes that follow it in the graph.

● Gradient with respect to output o(t) is calculated assuming the o(t) are used as the argument to
the softmax function to obtain the vector ŷ of probabilities over the output. We also assume that
the loss is the negative log-likelihood of the true target y(t).

from tensorflow import keras

from tensorflow.keras import layers

import os

import numpy as np

fname = os.path.join("jena_climate_2009_2016.csv")

with open(fname) as f:

 data = f.read()

lines = data.split("\n")

header = lines[0].split(",")

lines = lines[1:]

temperature = np.zeros((len(lines),))

raw_data = np.zeros((len(lines), len(header) - 1))

sequence_length = 120

sampling_rate = 6

sequence_length = 120

delay = sampling_rate * (sequence_length + 24 - 1)

batch_size = 256

num_train_samples=210225

num_val_samples=105112

num_test_samples=105114

Dataset Preparation
train_dataset =
keras.utils.timeseries_dataset_from
_array(

raw_data[:-delay],

targets=temperature[delay:],

sampling_rate=sampling_rate,

sequence_length=sequence_length
, shuffle=True,
batch_size=batch_size,
start_index=0,
end_index=num_train_samples)

val_dataset =
keras.utils.timeseries_dataset_from
_array(

raw_data[:-delay],

targets=temperature[delay:],

sampling_rate=sampling_rate,

sequence_length=sequence_length,

shuffle=True,

batch_size=batch_size,

start_index=num_train_samples,

end_index=num_train_samples +
num_val_samples)

test_dataset =
keras.utils.timeseries_dataset_from
_array(

raw_data[:-delay],

targets=temperature[delay:],

sampling_rate=sampling_rate,

sequence_length=sequence_length,

shuffle=True,

batch_size=batch_size,

start_index=num_train_samples +
num_val_samples)

Bidirectional RNN
inputs = keras.Input(shape=(sequence_length, raw_data.shape[-1]))

x = layers.Bidirectional(layers.LSTM(16))(inputs)

outputs = layers.Dense(1)(x)

model = keras.Model(inputs, outputs)

model.compile(optimizer="rmsprop", loss="mse", metrics=["mae"])

history = model.fit(train_dataset,

epochs=1,

validation_data=val_dataset)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

