
Tiny ML
Tassadaq Hussain

Professor Namal University
Director Centre for AI and Big Data

Collaborations:
Barcelona Supercomputing Center Barcelona, Spain

European Network on High Performance and Embedded Architecture and Compilation
Pakistan Supercomputing Center

Supervised ML

What is TinyML
● The usual definition is running machine learning

on embedded devices at an average of less than
one milliwatt in power.

● This power requirement is important because it
allows unattended devices on batteries or
energy harvesting.

● Here we’ll stretch the definition temporarily to
include MCUs that use 10’s of mWs, since
they’re easier to work with and widely available

Targeted Hardware
Single Board Computer (SBC)
Low Performance
Low Power
Low Cost

Software Development Framework
● tensorflow.org/lite/microcontrollers!

– It fits in less than 20KB of binary footprint, and
has no operating system, malloc/free or C library
dependencies, so it can run on bare metal.

● github.com/uTensor/uTensor
● edgeimpulse.com
● cartesiam.ai
●

●

Data and Literature

TinyML Model Deployment

Conventional VS ML Programming

Applications
● Keyword Spotting:
● Gesture Recognition:
● Anomaly Detection in Sensor Data:
● Health Monitoring:
● Object Detection in Edge Cameras:
● Industrial IoT (IIoT) Applications:
● Environmental Monitoring:

Solvers and Models
● Utensor
● CMSIS-NN (Cortex Microcontroller

Software Interface Standard - Neural
Network):

● TensorFlow Lite for Microcontrollers:
● EdgeML:
● MicroML

Example
● Micro RaspperyPi

● https://github.com/ShawnHymel/tinyml-
example-anomaly-detection

First Neural Network
● import tensorflow as tf
● import numpy as np
● from tensorflow import keras
●

● # define a neural network with one neuron
● model = tf.keras.Sequential([keras.layers.Dense(units=1, input_shape=[1])])
●

● # use stochastic gradient descent for optimization and
● # the mean squared error loss function
● model.compile(optimizer='sgd', loss='mean_squared_error')
●

● # define some training data (xs as inputs and ys as outputs)
● xs = np.array([-4.0, -2.0, 2.0, 4.0, 6.0, 8.0], dtype=float)
● ys = np.array([-3.0, -1.0, 1.0, 3.0, 5.0, 7.0], dtype=float)
●

●

● # fit the model to the data (aka train the model)
● model.fit(xs, ys, epochs=300)
●

● print(model.predict([20.0]))

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

