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From the Age of Computing to the Age of Data

e Real world Problems

e Data Science

- Technologies

- Skills Data
Centric

— Organizational Changes

- Compliance And Ethics Problem

 Coding Languages
- Programming Languages
— Scripting Languages
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Most in-demand programming languages of 2022
Based on Linkedin job postings in the USA & Europe
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Size of programming language communities in Q3
2021

Active software developers, globally, in millions (n=12,506)

Most popular in Least popular in

Javascript* Web, backend erggé]:tlj-éd
python [IIIEGEGEGEEEELD DS/ML. l1oT apps Mobile, AR/VR
Java m Mobile, desktop DS/ML, web
C/C++ Embedded, loT apps Web, mobile
PHP Web, backend DS/ML. mobile
c# AR DO, a/re wcikibe
Visual devel‘)p'::;:; - 3.6 M Desktop, AR/VR Cloud, web
Kotlin [l 2o ™M Mobile. AR/VR DS/ML. desktop
swift [l 25 M Mobile, AR/VR %Zi’;‘;‘gg-
co WMl 20m SoBIkenL 3PS Tor | Games, web
Dart J 1.am Mobile Web
Objective C - 1.4 M AR/VR Desktop, games
Ruby ] 1.a m loT. backend DS/ML. web
Rust Jj 11 m AR/VR. embedded Mobile. web
Lua ] o m AR/VR, loT,. games Mobile, desktop

FIOATA

(") JavaScript includes CoffeeScript and TypeScript
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Problem Program and Process

Problem

High-Level Language

Assembly Language

Machine Language
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Source Code
(.c,.cpp & .h)

L

C Code

Include Header Files
& expand macros

Pre-Processor

Generate Assembly
Code

=

Generate Machine
Cod

Linking Static Library
dib & .a

Linker

Executable Machine
Code

Executéble File '
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Data Processing
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Signal Processing System
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Memory

Peripheral and I/O devices

___https:/lwww.circuitbasics.com/types-of-memory-on-the-arduinol/
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Why C/C++

1. Object-Oriented

C++ is an object-oriented programming language which means that the main focus is on objects and manipulations around
these objects. This makes it much easier to manipulate code, unlike procedural or structured programming which requires a
series of computational steps to be carried out.

2. Speed

When speed is a critical metric, C++ is the most preferred choice. The compilation and execution time of a C++ program is
much faster than most real-time and general-purpose programming languages.

3. Compiled

Unlike other programming languages where no compilation is required, every C++ code has to be first compiled to a low-level
language and then executed.

4. Rich Library Support

The C++ Standard Template Library (STL) has many functions available to help write code quickly. For example, there are
STLs for various containers like hash tables, maps, sets, etc.

5. Pointer Support
C++ also supports pointers which are often not available in other programming languages.
6. Closer to Hardware

C++ is closer to hardware than most general-purpose programming languages. This makes it very useful in those areas where
hardware and software are closely coupled together, and low-level support is needed at the software level.

7. Vast range of targeted technologies
8. Large Community
9. Big-Projects (Operating System)
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Advanced C/C++ Programmings

* C/C++

e Parallel
— Pthread Libraries

e Parallel Programming Models
- OpenMP
- MPI
- OpenACC
- OpenCL
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Processing Applications

Sound applications

- Compression, enhancement, special effects, synthesis, recognition,
echo cancellation,...

- Cell Phones, MP3 Players, Movies, Dictation, Text-to-speech,...
Communication

- Modulation, coding, detection, equalization, echo cancellation,...
— Cell Phones, dial-up modem, DSL modem, Satellite Receiver,...
Automotive

- ABS, GPS, Active Noise Cancellation, Cruise Control, Parking,...
Medical

- Magnetic Resonance, Tomography, Electrocardiogram,...
Military

- Radar, Sonar, Space photographs, remote sensing,...

Image and Video Applications

- DVD, JPEG, Movie special effects, video conferencing,...
Mechanical

— Motor control, process control, oil and mineral prospecting,...
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http://www.eas.asu.edu/~dsp/grad/anand/java/Audio/Audio.html

Levels of processing

Scalar Processing
» Perform single operation on a single signal value

Stream Processing
— All computations with one input sample are completed
before the next input sample arrives
Block processing

— Each input sample x(n) is stored in memory before any
processing occurs upon it. After L input samples have
arrived, the entire collection of samples is processed at
once.

Vector processing

— Systems with several input and/or output signals being
computed at once: can work with streams or blocks
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v T
Programming Application

* Data Input Output

* Data Types System
Method

e Conditional Statements Algorithm
* Repetition Statements
e Functions and Libraries
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v T
Python Scripting Language

* Data Input Output Sensor, stored, etc.
* Data Types

* Conditional Statements
* Repetition Statements
* Functions and Libraries
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v T
Python Scripting Language

* Data Input Output Sensor, stored, etc.
* Data Types

* Conditional Statements
* Repetition Statements
* Functions and Libraries
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v T
Python Scripting Language

* Data Input Output Sensor, stored, etc.
e Data Types Local Database, Dataset
* Conditional Statements
* Repetition Statements
* Functions and Libraries
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v T
Python Scripting Language

* Data Input Output Sensor, stored, etc.
e Data Types Local Database, Dataset
* Conditional Statements COnditions

* Repetition Statements
* Functions and Libraries
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v T
Python Scripting Language

* Data Input Output Sensor, stored, etc.
e Data Types Local Database, Dataset
* Conditional Statements CONCIHONS

* Repetition Statements Repetitions

* Functions and Libraries
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v T
Python Scripting Language

* Data Input Output Sensor, stored, etc.
» Data Types Local Database, Dataset
* Conditional Statements CONCIHONS

* Repetition Statements Repetitions

Operations

e Functions and Libraries

System

UCERD
Gathering
‘& \ Intelle::tua.ls




Environment

# Libraries
# Read data

# Operations: Filtering, Processing, Classification, Control
etc.

# Visualizing

# Write, Operate etc
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Libraries and Functions

https://www.programiz.com/c-programming/online-compiler/

#include <stdio.h>
#include “maths.h”
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https://www.programiz.com/c-programming/online-compiler/

Data Types/Structure

Scalar: int a, b,c; float x,y,z;
Vector
Arrays: int ab[1000]

Pointers

UCERD
Gathering
\ Intelledctuals



Condition

If (condition_true)

e.g.
If (gpa > 2)
print gpa
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Repetition

for (int x=0; x<100; x=x+1)
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Functions

Write functions which solve tasks (math,
signal processing, etc) efficiently.

1.Make a function that takes two integer inputs and applies Binary XOR and return the value.

2.Write a function that take an address and a 32 bit values and writes 32 bit data on given
address.

UCERD
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https://www.programiz.com/c-programming/online-compiler/

Classes

Create classes in C++ that solve complex
tasks by organizing data and functions
Into a cohesive unit.

Provide user-defined types that can
encapsulate data and related operations.
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Domains

Cyber Security
Game Development
Embedded System
Signal Processing
Operating System
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Data and Signals
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