
High Level Synthesis

VLSI Design
Tassadaq Hussain Cheema
Professor EE Department

PakASIC.com

HIGH-LEVEL SYNTHESISHIGH-LEVEL SYNTHESIS

High-level synthesis: the automatic addition of
structural information to a design described by an
algorithm.

High-level synthesis (HLS), often referred to
as C synthesis, electronic system-level
(ESL) synthesis, algorithmic synthesis, or
behavioral synthesis, is an automated
design process that takes an abstract
behavioral specification of a digital system
and finds a register-transfer level structure
that realizes the given behavior.

Why HLS

 Functional Verification

High-level functional verification provides
substantial decrease in the test generation
time, test application time. By utilizing
debug/verify facility it increases the fault
coverage and decrease area/delay
overheads.

9

HLS Tools
Stratus HLS
AUGH
eXCite
Bambu
Bluespec
QCC
CHC
CoDeveloper
HDL Coder
CyberWorkbench
Catapult
DWARV
GAUT
Hastlayer
Instant SoC
Intel High Level Synthesis Compiler
LegUp HLS
LegUp
MaxCompiler
ROCCC
Symphony C
VivadoHLS
Kiwi
CHiMPS
gcc2verilog
HercuLeS
Shang

HLS Synthesis Flow

HARDWARE MODELS FOR HIGH-LEVEL
SYNTHESIS

 All HLS systems need to restrict the target hard-ware.
 All synthesis systems have their own peculiarities; but most

systems generate synchronous hardware and build it with the
following parts:

 ALU
 Registers
 MUX
 Buses
 Three State Driver (Controller)

HLS Hardware Concepts

Data Path + Control Structure

The data path: a network of functional units, registers,
multiplexers and buses. The actual ‘‘computation’’
takes place in the data path.

Control: the part of the hardware that takes care of
having the data present at the right place at a specific
time, of presenting the right instructions to a
programmable unit, etc.

Data-flow Graph

Data-flow Graphs

Control-flow Graph
case (C)

1:

begin

X = X + 3;

A = X + 1;

end

2:

A = X + 5;

default:

A = X + Y;

endcase

HLS Compiler Transformation

 Constant folding
 Redundant operator elimination
 Tree height transformation
 Control flattening
 Logic level transformation
 Register-Transfer level transformation

Constant Folding

 Redundant operator elimination

 Tree height transformation

Control flattening

Logic Level Transformation

Partitioning
 Scheduling
 Allocation
 Unit selection

Loop Unrolling

Loop unrolling is the primary mechanism to
add parallelism into a design. This is done
by automatically scheduling multiple loop
iterations in parallel, when possible.

SCHEDULING
 Task of assigning behavioral operators to control steps.

 Input:
 Control and Data Flow Graph (CDFG)

 Output:
 Temporal ordering of individual operations (FSM states)

 Basic Objective:
 Obtain the fastest design within constraints (exploit

parallelism).

Scheduling Algorithms

Three popular algorithms:
– As Soon As Possible (ASAP)
– As Late As Possible (ALAP)
– Resource Constrained (List scheduling)

Resource Allocation

Once the DFG has been assembled, each
operation is mapped onto a hardware
resource which is then used during
scheduling.

Pipeline and Overlap

Memories

Smart Buffers:
To manage on-chip data for computationally intensive window (loop) operations, the HLS

 use smart buffers in accelerators. The smart buffer helps to minimize the accesses
to he Main Memory for programs that operate on static data structures and to
perform loop operations over arrays. The smart buffer is a part of ASHA and uses
FPGA resources.

Scratch-pad Memory:
The Scratch-pad is a fast directly addressed software managed SRAM memory. The

Scratch-pad has better real-time guarantees than caches and by its significantly
lower overheads it is better in access time, energy consumption and area. Recent
advances have made much progress in compiling static structures into scratch-pad
memory that enable several performance enhancements. Instead of using traditional
load/store instructions the scratch-pad uses direct memory-memory operations using
DMA. The Scratch-pad memory access uses source and destination address
registers, each of which holds a starting address of the memory.

Benefits of HLS
 Reducing design and verification efforts
 More effective reuse
 Investing R&D resources where it really

matters
 Testing and verifications

Example
void MaxFilter(int A0, int A1, int A2, int& max)

{

 int tmp ;

 if (A0 > A1)

 {

 tmp = A0 ;

 }

 else

 {

 tmp = A1 ;

 }

 if (tmp > A2)

 {

 max = tmp ;

 }

 else

 {

 max = A2 ;

 } }

FIR Filter
/* A five-tap FIR filter.*/

typedef struct

{ // Inputs

 int A0_in ;

 int A1_in ;

 int A2_in ;

 int A3_in ;

 int A4_in ;

 // Outputs

 int result_out ;

} FIR_t ;

FIR_t FIR(FIR_t f)

{ // Should be propagated

 const int T[5] = { 3, 5, 7, 9, 11 } ;

 f.result_out = f.A0_in * T[0] +

 f.A1_in * T[1] +

 f.A2_in * T[2] +

 f.A3_in * T[3] +

 f.A4_in * T[4] ;

 return f ;

}

Digital Filter
#include "roccc-library.h"

void firSystem()

{

 int A[100] ;

 int B[100] ;

 int i ;

 int myTmp ;

 for(i = 0 ; i < 100 ; ++i)

 {

 // The mapping of the signals must match the order in which they appear

 // in the exported struct. Hence, the switching of the i+2 and i+3

 // elements.

 FIR(A[i], A[i+1], A[i+3], A[i+2], A[i+4], myTmp) ;

 B[i] = myTmp ;

 }

}

Vivado HLS Example
// original, non-optimized version of FIR

#define SIZE 128

#define N 10

void fir(int x[SIZE], int y[SIZE]) {

// FIR coefficients

int coeff[N] = {13, -2, 9, 11, 26, 18, 95, -43, 6, 74};

// exact translation from FIR formula above

for (int n = 0; n < SIZE; n++) {

int acc = 0;

for (int i = 0; i < N; i++) {

if (n - i >= 0)

acc += coeff[i] * x[n - i];

}

y[n] = acc;

}

}

Matrix Multiplication

#define N 3 // Size of the matrix (N x N)

// Function to multiply two matrices

void mat_mul(const int A[N][N], const int B[N][N], int C[N][N]) {

 // Matrix multiplication

 for (int i = 0; i < N; i++) {

 for (int j = 0; j < N; j++) {

 int sum = 0;

 for (int k = 0; k < N; k++) {

 sum += A[i][k] * B[k][j];

 }

 C[i][j] = sum;

 }

 }

}

Sobel Filter
void image_filter(int img_in[512][512], int img_out[512][512]) {

 int Gx[3][3] = {{-1, 0, 1}, {-2, 0, 2}, {-1, 0, 1}};

 int Gy[3][3] = {{-1, -2, -1}, {0, 0, 0}, {1, 2, 1}};

 #pragma HLS ARRAY_PARTITION variable=Gx complete dim=0

 #pragma HLS ARRAY_PARTITION variable=Gy complete dim=0

 for (int i = 1; i < 511; i++) {

 for (int j = 1; j < 511; j++) {

 int sumX = 0, sumY = 0;

 for (int k = -1; k <= 1; k++) {

 for (int l = -1; l <= 1; l++) {

 sumX += img_in[i+k][j+l] * Gx[k+1][l+1];

 sumY += img_in[i+k][j+l] * Gy[k+1][l+1];

 }

 }

 img_out[i][j] = sqrt(sumX*sumX + sumY*sumY);

 }

 }

}

I2C Communication

#include <hls_stream.h>

#include <ap_int.h>

#define SDA_HIGH 1

#define SDA_LOW 0

#define SCL_HIGH 1

#define SCL_LOW 0

void i2c_main(

volatile bool *sda, // Data line

volatile bool *scl, // Clock line

unsigned char address, // I2C slave address

unsigned char data, // Data to send

volatile bool *done, // Operation done flag

bool start // Start signal

) {

 #pragma HLS INTERFACE ap_none port=sda

 #pragma HLS INTERFACE ap_none port=scl

 #pragma HLS INTERFACE ap_none port=address

 #pragma HLS INTERFACE ap_none port=data

 #pragma HLS INTERFACE ap_none port=done

 #pragma HLS INTERFACE ap_none port=start

 #pragma HLS INTERFACE ap_ctrl_none
port=return

 static enum {IDLE, START, ADDR,
DATA, STOP} state = IDLE;

 static unsigned char bit_counter =
0;

 static unsigned char shift_reg = 0;
 switch(state) {
 case IDLE:
 *scl = SCL_HIGH;
 *sda = SDA_HIGH;
 if (start && !(*done)) {
 state = START;
 }
 break;
 case START:
 *sda = SDA_LOW; // Start condition:

SDA goes low while SCL is high
 state = ADDR;
 shift_reg = address <<

1; // Shift left to make room for
R/W bit

 bit_counter = 0;
 break;

case ADDR:
 if (bit_counter < 8) {
 *sda = (shift_reg &

0x80) ? SDA_HIGH : SDA_LOW;
 shift_reg <<= 1;
 *scl = SCL_LOW;
 *scl = SCL_HIGH;
 bit_counter++;
 }
else {
 state = DATA;
 shift_reg = data;
 bit_counter = 0;
 }
 break;
 case DATA:
 if (bit_counter < 8) {
 *sda = (shift_reg &

0x80) ? SDA_HIGH : SDA_LOW;
 shift_reg <<= 1;
 *scl = SCL_LOW;
 *scl = SCL_HIGH;
 bit_counter++;
 } else {
 state = STOP;
 }
 break;
 case STOP:
 *sda = SDA_LOW;
 *scl = SCL_HIGH;
 *sda = SDA_HIGH; // Stop

condition: SDA goes high while
SCL is high

 *done = true;
 state = IDLE;
 break;
 } }

Results

Tasks

What is the difference between two
approaches of System Design

a) RTL Sequential Code Architecture
b) HLS Architecture

Install Xilinx Vitis and Vivado HLS
Write few examples and check their

behaviours

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

